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Abstract
Background: To support health policy makers in setting priorities, quantifying the potential effects
of tobacco control on the burden of disease is useful. However, smoking is related to a variety of
diseases and the dynamic effects of smoking cessation on the incidence of these diseases differ.
Furthermore, many people who quit smoking relapse, most of them within a relatively short period.

Methods: In this paper, a method is presented for calculating the effects of smoking cessation
interventions on disease incidence that allows to deal with relapse and the effect of time since
quitting. A simulation model is described that links smoking to the incidence of 14 smoking related
diseases. To demonstrate the model, health effects are estimated of two interventions in which part
of current smokers in the Netherlands quits smoking.

To illustrate the advantages of the model its results are compared with those of two simpler
versions of the model. In one version we assumed no relapse after quitting and equal incidence
rates for all former smokers. In the second version, incidence rates depend on time since cessation,
but we assumed still no relapse after quitting.

Results: Not taking into account time since smoking cessation on disease incidence rates results
in biased estimates of the effects of interventions. The immediate public health effects are
overestimated, since the health risk of quitters immediately drops to the mean level of all former
smokers. However, the long-term public health effects are underestimated since after longer
periods of time the effects of past smoking disappear and so surviving quitters start to resemble
never smokers. On balance, total health gains of smoking cessation are underestimated if one does
not account for the effect of time since cessation on disease incidence rates. Not taking into
account relapse of quitters overestimates health gains substantially.

Conclusion: The results show that simulation models are sensitive to assumptions made in
specifying the model. The model should be specified carefully in accordance with the questions it
is supposed to answer. If the aim of the model is to estimate effects of smoking cessation
interventions on mortality and morbidity, one should include relapse of quitters and dependency
on time since cessation of incidence rates of smoking-related chronic diseases. A drawback of such
models is that data requirements are extensive.
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Background
Smoking is a risk factor for many major chronic diseases
and reduces both length and quality of life [1]. In the
Netherlands, about 28% of the Dutch population aged 15
or above smokes [2]. About 13% of the Dutch burden of
disease and 3.7% of Dutch health care costs in 2003 could
be attributed to smoking [3]. An effective tobacco control
policy could thus substantially reduce the burden of dis-
ease. However, most of the effects of smoking on morbid-
ity and mortality become manifest only after many years
and not in all smokers. Since randomized trials to investi-
gate the effect of smoking cessation interventions on dis-
ease occurrence and mortality are practically impossible,
models based on current epidemiological knowledge and
synthesizing data from many different sources are needed
to estimate the effects of smoking cessation over time [4].

It was our aim to quantify the effects of smoking interven-
tions on public health, taking into account the time since
cessation of quitters. The latter is important, since many
quitters relapse [5] and for most smoking related diseases
the increased risks of former smokers only decrease grad-
ually over time since cessation [6-8] Several models have
been presented in the literature that deal with relapse and
that include mortality risks of former smokers declining
with time since quitting [9-13]. However, the potential
use of these models is limited because they do not include
all characteristics that are necessary to calculate the impact
of smoking cessation on summary measures of popula-
tion health combining morbidity and mortality, such as
quality or disability adjusted life years. The SimSmoke
model, for example, describes only all cause mortality and
mortality from lung cancer [11,12]. The effects of chang-
ing smoking class prevalence rates on other chronic dis-
eases is calculated afterwards at each time step.

In this paper we present a model that is capable of describ-
ing the effects of smoking cessation on morbidity and
mortality over time, and that overcomes the limitations of
the models mentioned above. Our model describes the
life course of quitters after smoking cessation taking into
account relapse. It distinguishes the most important
smoking related chronic diseases, and the incidence rates
of former smokers depend on time since cessation. More-
over, it explicitly describes morbidity from these diseases
by modeling the change of the disease prevalence rates
over time. Morbidity, in turn, determines mortality in the
model. By modeling diseases, effects of smoking cessation
on quality of life and health care costs can simply be esti-
mated by coupling health care costs and quality of life fig-
ures to diseases [14] instead of coupling them directly to
smoking status.

The model presented in this paper is part of the RIVM
Chronic Disease Model (CDM) [15]. The CDM is a state-

transition Markov-type model that was designed to
describe the effects of epidemiological risk factors on mor-
bidity and mortality from several chronic diseases in the
Dutch population. It includes 28 chronic diseases and sev-
eral risk factors amongst which smoking, Body Mass
Index, and physical inactivity. In modeling diseases
explicitly, the structure of the model is similar to the Pre-
vent model [16] and the recently presented Quit Benefits
model [10,17]. An important difference with the Prevent
model is that also different risk factor classes are modeled.
In comparison with the Quit Benefits Model our model
includes more diseases, allows for comorbidity and has
the ability to track health effects over a longer period. In
the current study we describe how time since cessation is
taken into account as an additional model parameter. In
the next section, the model structure with respect to smok-
ing is explained in detail. To illustrate the model, health
effects are estimated of two interventions in which part of
Dutch smokers quits smoking. To illustrate the strengths
of the model its results are compared with the results of
two simpler model versions. In the most simple version
we assumed no relapse after quitting and equal incidence
rates for all former smokers. To this were added incidence
rates that depend on time since cessation. The final model
was arrived at by also including relapse of quitters. In the
discussion section, we will discuss the strengths and weak-
nesses of the model and elaborate on possible applica-
tions. Details on the mathematical structure of the model
and its input data can be found in Appendices.

Methodology
Basic structure of the RIVM Chronic Disease Model (CDM)
The CDM is a model that describes the effects of risk fac-
tors, including smoking and overweight, on the incidence
and mortality of chronic diseases in the population. It
describes the effects for the total Dutch population taking
into account birth and migration [15]. The CDM has been
used for future projections of risk factor and disease prev-
alence numbers [18,19,19-21], cost effectiveness analyses
[14] and estimates of healthy life expectancy [22]. The
model describes the life course of cohorts in terms of tran-
sitions between risk factor classes and transitions between
disease states over time. Risk factors and diseases are
linked through relative risks of disease incidence. The
CDM was formulated mathematically as a set of time-con-
tinuous differential equations [23]. The model equations
describe the 1-year changes of the probability values for
all risk factor classes and disease states in cohorts, speci-
fied by gender and age. The main model outcome varia-
bles are numbers of incident and prevalent cases and
numbers of deaths, specified by disease, age and gender.
To keep the number of model states manageable, the
model describes the changes of the risk factor distribu-
tions and disease probabilities separately, i.e. as marginal
distributions, but not the joint probability distribution
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function of all risk factor classes and diseases simultane-
ously.

The set of model equations consists of three components
(see Appendix 1). In the initialization component the
parameter values and the initial distribution of the popu-
lation over all model states are calculated. In the simula-
tion component the 1-year changes of the model state
prevalence numbers are calculated. These changes are the
result of transitions between the risk factor classes and dis-
ease states. The transition numbers are computed as the 1-
year transition probabilities times the model state preva-
lence numbers at the start of the 1-year time-interval.
Finally, in the post-processing component the values of
the output variables are calculated from the results of the
simulation component.

Demographic data such as all cause mortality rates and
initial population numbers were available from Statistics
Netherlands [24]. To estimate incidence, prevalence and
mortality rates in the general population, three types of
data sources were used: general practitioner registrations
for non-cancer diseases, national cancer registries, and
cohort studies for diabetes [25-27]. Non-cancer mortality
rates were estimated using a three state transition model
[28]. To compute health effects in terms of quality-
adjusted life years (QALYs), the CDM couples disability
weights from the Dutch Burden of Disease Study to dis-
ease prevalences [22]. Disability weights reflect the sever-
ity and impact of a disease relative to death and optimal
health, defined as absence of disability, and ranges from 0
(no disability) to 1 (death). The Dutch Burden of Disease
Study estimated disability weights for 48 different disease
categories, using the person trade-off method. For the
QALY calculations it was assumed that comorbidity
reduces quality of life but that the effects are less than the
sum of disability from the individual diseases[29,30].
Health care costs were calculated by coupling estimated
disease prevalence numbers to costs per patient per year
per disease available from the Dutch Costs of Illness study
[14,31].

Model structure with respect to smoking
The CDM relates smoking to increased incidence rates of
14 smoking-related chronic diseases, i.e. coronary heart
disease (acute myocardial infarction (AMI) and other cor-
onary heart disease), congestive heart failure, stroke,
chronic obstructive pulmonary diseases (COPD), diabe-
tes, and cancer of the lung, stomach, larynx, oral cavity,
esophagus, pancreas, bladder and kidney. The incidence
rates of smoking related diseases are increased in current
smokers as well as in former smokers, with the relative
risks of former smokers declining from the risk of a
smoker immediately after stopping smoking to that of a
never smoker as a function of time since cessation. Smok-

ing status was defined as 'never smoker', 'current smoker',
and 'former smoker'. The latter category was further sub-
divided into several classes based on the number of years
since smoking cessation: less than 1 year ago, quitted
between 1 and 2 years ago, and so forth, up to 20 years or
more. The transitions involved were initiation (from
'never' to 'current' smoker), cessation (from 'current' to
'former, and quitted less than 1 year ago'), relapse (from
any 'former' smoking class back to 'current'), and contin-
uation as former smoker (e.g. from 'quitted between 2 and
3 years ago' to 'quitted between 3 and 4 years ago'). For all
smoking-related diseases we distinguished two states, i.e.
without and with the disease. For each disease the transi-
tion involved was 'disease incidence', i.e. from 'disease-
free' to 'with the disease'. Finally, the model distinguishes
outflow due to mortality from any cause. Mortality rates
depend on the disease, i.e. persons with a disease have
higher mortality rates than disease-free persons. The
parameters used in the model are the 1-year probabilities
of each transition between model states described.

In the next subsection, we describe in detail how the
model parameters were estimated that depend on the
time since cessation: relapse probabilities for former
smokers and relative risks of smoking related diseases for
former smokers.

Input data and estimation of model parameters dependent 
on time since cessation
The initial distribution over all smoking classes and the 1-
year smoking class transition probabilities were estimated
from survey data from the Dutch Foundation on Smoking
and Health [2]. This is a national survey on smoking
which includes questions on current and past smoking
status. Initiation and quit probabilities for never-smokers
and current smokers were estimated using the retrospec-
tive data and are described elsewhere [32]. The initial
smoking class probability values were calculated from the
current smoking status. Since we had no input data on the
initial distribution of all former smokers over time since
smoking cessation, we generated this distribution by run-
ning the model initially for a birth cohort of non-smokers
(see Appendix 1). The generated distribution was used as
input data.

It was assumed that the relapse rates of quitters decrease
over the time since smoking cessation, and that the
decrease is according to a negative-exponential curve:

λ(s) = α β exp(-βs) (1)

with: 

s time since smoking cessation
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λ smoking relapse rate

α, β regression coefficients.

The 1-year probability of relapse was calculated by apply-
ing this hazard rate to a 1-year time interval. The parame-
ters α and β were estimated by fitting the probability of
relapse to the data on the past history of former smokers
[2,33]. Details and results of the estimation method are
given in Appendix 2.

For the risk factor class 'current smoking' relative risks,
specified by gender and age, were used (see the online
appendix of [22]). The relative risks of former smokers
gradually decrease over time since smoking cessation in
the following way. Immediately after cessation the relative
risks are similar to those of current smokers. In the long
run and conditional on survival the negative health effects
of smoking disappear, and the relative risks are similar to
those of never smokers, i.e. they attain value 1. Therefore,
it was assumed that for each disease the relative risk
decreases according to a negative-exponential curve start-
ing from the value for current smokers and converging to
the value 1. Furthermore, it was assumed that the rate of
convergence decreases with age. This was done to account
for the cumulative nature of the effects of smoking. We
estimated these relative risks using the following regres-
sion model:

RRformer(a,s) = 1 + (RRcurrent(a) - 1) exp(- γ(a) s)
(2)

γ(a) = γ0 exp(-ηa)

with: 

a age

s time since smoking cessation

γ regression coefficient of time dependency

γ0, η intercept and regression coefficient respectively of
age dependency

RRformer(a) relative risks of disease incidence for former
smokers

RRcurrent(a) relative risks of disease incidence for current
smokers

The parameters γ0 and η were estimated in a two-step pro-
cedure, using relative risk data from major cohort studies
reported in literature. In the first step we estimated the
regression coefficient γ(a) for each study separately. Next,

all regression coefficients γ(a) calculated were plotted in
one graph against the mean age of the cohort. In the sec-
ond step the regression coefficient γ0 and η were estimated
from these γ(a) values. The details and results of the esti-
mation method are given in Appendix 3.

Results
To demonstrate our method as implemented in CDM, we
calculated the health effects of two intervention scenarios
in which part of Dutch current smokers in the Nether-
lands quits smoking:

- 'young quitters' scenario: 10% of all current smokers
aged 20–44 quit smoking in year 1;

- 'old quitters' scenario: 10% of all current smokers aged
45–70 quit smoking in year 1.

To estimate the health effects of the intervention scenar-
ios, the results were compared to a current practice sce-
nario. In the current practice scenario, the CDM was run
with the current distribution of smoking in the Nether-
lands as input and assuming that there would be no tran-
sitions between smoking classes over time. To show the
effect of taking into account time since smoking cessation
for former smokers, the estimated effects of the interven-
tion scenarios were compared using three different ver-
sions of the model:

- 'simple' model: no relapse of quitters and relative risks of
smoking related diseases do not depend on time since ces-
sation.

- 'time dependent' model: relative risks of smoking related
diseases depend on time since smoking cessation, but no
relapse of quitters.

- 'time dependent & relapse' model: relapse of quitters and
relative risks of smoking related diseases depend on time
since smoking cessation.

Figure 1 displays the difference in the numbers of smokers
for the 'young quitters' and 'old quitters' scenarios com-
pared to the current practice scenario, both for the 'time
dependent' and the 'time dependent & relapse' model. As
can be seen from Figure 1, taking into account relapse
influences the projections of the number of smokers con-
siderably: in both scenarios approximately half of the
extra quitters relapse within a year. However, after one
year differences between the 'young quitters' and 'old
quitters' scenarios emerge: in the scenario targeted at older
smokers more of the extra quitters die.

Figures 2 and 3 illustrate the differences between the
dynamics of the 'simple' and 'time dependent' model: in
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both scenarios the initial decrease in AMI incidence is
highest for the 'simple' model, since incidence rates
decrease immediately after smoking cesssation. In the
'time dependent' models the gradual decrease of relative
risks of former smokers becomes visible only after some
time. After some time however, as relative risks in the
'time dependent' models approach those of never smok-
ers, the effects on disease incidence become stronger in
this model. This effect is more pronounced in the 'old
quitters' scenario due to the fact that at higher ages disease
incidence rates and relative risks are higher. Although the
nature of the dynamics is similar as in the 'time depend-
ent' model, the effects on disease incidence are less strong
in the 'time dependent & relapse' model due to relapse.

Figures 4 and 5 display QALYs gained over time calculated
as the difference in QALYs between the intervention and
current practice scenarios. Figure 4 reveals that health
gains of smoking cessation are underestimated in younger
populations if one does not account for time since cessa-
tion. Figure 5 shows more clearly that not taking into
account that relative risks depend on duration of smoking
cessation results in overestimating health gains in the
short run but underestimating health gains in the long
run. Both Figures 4 and 5 show that not taking into
account relapse results in too optimistic estimates of the
health gains of smoking cessation.

Table 1 displays cumulative health gains over a period of
100 years for the two intervention scenarios calculated

Differences in number of smokers for intervention scenarios compared to current practice scenario with 'time dependent' and 'time dependent & relapse' model versionsFigure 1
Differences in number of smokers for intervention scenarios compared to current practice scenario with 'time dependent' and 
'time dependent & relapse' model versions.

Difference in AMI incidence for three model versions in the 'young quitters' scenario compared to current practice scenarioFigure 2
Difference in AMI incidence for three model versions in the 'young quitters' scenario compared to current practice scenario.
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with the three different model versions. Table 1 shows
that in the end both in younger and older populations
health gains are underestimated if one does not allow rel-
ative risks to depend on duration of cessation. This effect
is more pronounced in younger populations. Further-
more, health gains are overestimated if relapse is not
accounted for.

Conclusion and Discussion
In this paper, we showed that not taking into account
duration of smoking cessation time results in biased effect
measures of interventions. The immediate public health
effects are overestimated, since in reality quitters start with

having the health risks of current smokers. The long-term
public health effects are underestimated since after longer
time periods the effects of past smoking have disappeared
and so surviving quitters resemble more never smokers.
On balance these two counteracting forces cause that
health gains of smoking cessation are underestimated
when one does not allow disease risks to depend on time
since smoking cessation. This effect is more pronounced
in younger populations.

These results show that simulation models are sensitive to
assumptions regarding the model specification, in our
case transition rates for former smokers. Therefore sensi-

Difference in AMI incidence for three model versions in the 'old quitters' scenario compared to current practice scenarioFigure 3
Difference in AMI incidence for three model versions in the 'old quitters' scenario compared to current practice scenario.

QALYs gained over time 'young quitters' scenarioFigure 4
QALYs gained over time 'young quitters' scenario.
Page 6 of 15
(page number not for citation purposes)



Cost Effectiveness and Resource Allocation 2008, 6:1 http://www.resource-allocation.com/content/6/1/1
tivity analyses of simulation models should not only
involve parameter values, but also model specifications
should be taken into consideration. The model should be
specified carefully to coincide with the questions it is sup-
posed to answer. If the aim of the model is solely to
project future health status in a business as usual scenario,
a model without duration dependency might suffice. In
the total population of former smokers, age correlates
strongly with time since cessation. Therefore, using age
specific relative risks without taking into account time
since cessation would not introduce major errors if the
aim is to make projections for the population of former
smokers. Including time since smoking cessation becomes
crucial when the aim of the modelling is to estimate
effects of smoking cessation interventions instead of mak-
ing projections.

A major drawback of the methodology employed is that
more complex models require more detailed data, which
are harder to get. For example, in the 'time dependent'
models we used relative risks that were specified by both
age and time since smoking cessation. The number of
studies available to estimate these relative risks was much

smaller than the number of studies available to estimate a
single age-dependent relative risk value for all former
smokers combined. The reduction of absolute health risks
after smoking cessation depends both on the absolute and
relative disease risks for smoking. Since the absolute risks
are largest for elderly ages, the reductions are most sensi-
tive to the relative risk values for these ages. This was illus-
trated, for example, by the discussion on the attribution of
US mortality numbers to obesity, where the attributed
number of deaths were initially overestimated by assum-
ing age-constant relative risk values [34]. This was reason
for us to analyze the effect of age on the reduction of
health risks over time since smoking cessation. Indeed,
empirical data (see Appendix 3) showed that the rate of
decline decreased with age. As a result, the relative effects
of smoking cessation are smaller for higher ages. Analo-
gously, we analyzed the effect of age on the reduction of
smoking relapse rates. However, the data available did not
enable us to regress these rates on both time since cessa-
tion and age simultaneously. Moreover, these data were
retrospectively obtained measurements, with the first
measurement being the smoking status for the period
'more than 2 years ago'. As a result, we could do no better

QALYs gained over time 'old quitters' scenarioFigure 5
QALYs gained over time 'old quitters' scenario.

Table 1: Cumulative differences in (quality adjusted) life years between intervention and current practice scenarios over a period of 100 
years

'young quitters' scenario 'old quitters' scenario

'simple' 
model

'time dependent' 
model

'time dependent & 
relapse' model

'simple' 
model

'time dependent' 
model

'time dependent & 
relapse' model

Life years gained
(* 1,000)

525 746 439 277 317 187

QALYs gained
(* 1,000)

425 588 348 200 221 131
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than assuming that the proportional reduction of the
relapse rates was constant over the time since cessation
and over age.

Including specific chronic diseases and relapse rates and
relative risks that depend on time since smoking cessation
makes the model presented well suited to calculate the
impact of smoking interventions on morbidity and mor-
tality results, when it is appropriate to take into account
several effects simultaneously. Examples of these effects
are dependency on age, dependency on time since smok-
ing cessation, and competing morbidity and mortality
risks. It also enabled us to calculate generic health meas-
ures such as disability-adjusted life years. The model cal-
culates the difference in quality adjusted life years
between smokers and never smokers, and hence shows
the health gain that can be gained by policy measures. By
using a disease specific approach, the causal effects on
quality of life and health care costs can be estimated and
used in cost effectiveness analysis.

Appendix 1: Mathematical model equations
The model consists of three components. In the initializa-
tion component the parameter values and the initial dis-
tribution of the population over all model states are
calculated from the input data. In the simulation compo-
nent the 1-year changes of the model state prevalence
numbers are calculated for each cohort separately. Each
cohort is defined by its initial age value, i.e. a(0). These
changes in the number of persons for each state are the
result of transitions between the risk factor classes and
between the disease states. The numbers of transitions are
computed as the 1-year transition probabilities times the
state prevalence numbers at the start of the 1-year time-
interval. Finally, in the post-processing component the
model output variables are calculated from the results of
the simulation component. All model parameters and var-
iables are specified by gender and age, but we omit the
index for gender below for reasons of readability.

Initialization component
The parameters calculated here are the 1-year baseline dis-
ease incidence rates, i.e. the rates of getting the disease for
never smokers, and the mortality rates for other causes of
death. The disease incidence rates for never smokers are
calculated by dividing the overall incidence rates by the
weighted sum of relative risks.

with: 

a age

c index over all smoking classes, c = never, current, former

id,0(a) data disease d incidence rate at age a

id,base(a) disease d incidence rate for never smokers at age a

nc,0(a) initial smoking class probability values at age a

RRd(c,a) relative risk of incidence of disease d for smoking
class c

The relative risks for never and current smokers are input
data (i.e. 'given'). The relative risks of former smokers are
calculated (see Appendix 3). The other causes mortality
rates describe the mortality rates for causes of death other
than the smoking-related chronic diseases included in the
model.

with: 

d index over diseases

μtot(a) all cause mortality rates at age a

μother(a) mortality rates for other causes of death at age a

pd,0(a) initial disease d prevalence rate values at age a

amd(a) disease d related attributable mortality rates at age
a

The parameter amd(a) describes the mortality rates
uniquely attributable to disease d. This parameter is
defined as the additional mortality rate of persons with
disease d compared to persons without disease d, with
gender, age, and risk factor classes and states for other dis-
eases being equal. The initial numbers of never and cur-
rent smokers and the initial disease prevalence rates are
calculated from input data:

with: 

a(0) age of cohort at initial time point t = 0

Nc(t) number of persons in smoking class c at time t,

for c = never, current

Npop,0(a) initial total population numbers

i a
id a

RRd c a nc ac
d base, ( ) , ( )

( , ) , ( )
=

∑
0

0
(3)

μ μother tot d d
d

a a am a p a( ) ( ) ( ) ( ),= − ∑ 0 (4)

N n a N a

p p a
c c pop

d d

( ) ( ( )) ( ( ))

( ) ( ( ))
, ,

,

0 0 0

0 0
0 0

0

=
=

(5)
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pd(t) disease d prevalence rates at time t

nc,0(a) input proportions of population in smoking
classes c

pd,0(a) input disease d prevalence rates at age a

The initial values of the numbers of former smokers, strat-
ified by time since cessation, were generated in a pre-
processing step by running the model for a birth cohort
without any disease included. In this way we calculated
the distribution of former smokers nformer(s,a) over all ces-
sation classes (s), specified by gender and age a. Doing so,
we implicitly assumed that all smoking class transition
probabilities are constant over time. Thus:

Nformer(0,s) = nformer,0(a(0))nformer(s,a(0)))Npop,0(a(0))
(6)

with: 

Nformer(t,s) number of former smokers at time t in former
smoking class s

s index over classes for time since smoking cessation, s =
1,...,S

E.g., s = 2 means former smoker stopped 1–2 years ago.

nformer,0(a) data proportion of former smokers in the pop-
ulation at age a

Simulation component
The simulation component describes the changes of the
prevalence numbers in all smoking classes distinguished,
as well as the changes of the prevalence rates for all
chronic diseases included in the model. These changes are
formulated as differential equations with 1-year time
steps.

1-year changes of smoking class prevalence numbers
The mortality rates for all smoking classes at time t (μc(t))
depend on the disease prevalence rates. The disease prev-
alence rates for each smoking class are found by distribut-
ing the prevalent disease cases at time t over all smoking
classes using relative risks and the smoking class distribu-
tion at time t. To do so, first the mean relative risk values
are computed for time t.

with:

t time parameter, with 1-year steps

RRd(s,a) disease d relative risk of former smoking class s

at age a, see Appendix 3

E(RRd(former),t) mean disease d relative risk value at time
t for former

smokers, at time t

E(RRd,t) mean disease d relative risk value in entire popu-
lation at time t

Note that the relative risks of never and current smokers
(RRd(c,a), c = never,current) are constant values, whilte
those of former smokers (E(RRd(former,t))) depend on
the distribution over all time since cessation classes and
thus are re-calculated each year. We assumed for each dis-
ease that the distributions of the prevalent and incident
disease cases over the smoking classes are equal. Adding
mortality from other causes results in the total mortality
rates for each smoking class at time t.

with μc(t) all cause mortality rates for smoking class c at
time t

These mortality rates are transformed to 1-year mortality
probabilities assuming constant rate values over the year.
Using these mortality probabilities, still denoted as μc(t),
the following equations describe the 1-year change of the
prevalence numbers of never and current smokers (Nc(t)),
and of former smokers specified by time since smoking
cessation (Nfomer(t,s)).

with 

λstart(a), λstop(a) 1-year start and stop smoking probabili-
ties respectively,

E RR former t
RRd s a t N former t ss

N former t ss
d( ( ), )

( , ( )) ( , )

( , )
=

∑
∑

(7)

E RR t
RRd c a t Nc tc

Nc ts
d( , )

( , ( )) ( )

( )
= ∑

∑
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μ μc othert a t
RRd c a t amd a t pd td

E RRd t
( ) ( ( ))

( , ( )) ( ( )) ( )

( , )
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N t
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( ) ( ( ( )) ( )) ( )
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+ = − −

+

1 1 λ μ

11 1) ( ( ( )) ( )) ( ) ( ( ))= − − +λ μ λstop current current start nea t t N t a t N vver relapse former
s
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t s N t s
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at age a

λrelapse(s) smoking relapse probabilities that depend on
time since cessation class s, see appendix 2

The number of former smokers in the last class S at the
end of the year are the sum of the numbers in the last and
second last class at the start of the year that do not relapse
or die.

1-year changes in disease prevalence rates
We describe the 1-year change in prevalence rates instead
of numbers for each disease included. Since the mortality
rates for other causes of death are assumed equal for per-
sons with and without the disease, the change in the rate
values depends only on the disease incidence and disease
related excess mortality rates. The current disease inci-
dence rates are the baseline disease incidence rates times
the current mean relative risk value.

id(t) = E(RRd,t)id,base(a(t)) (11)

with:

id(t) disease d incidence rate at time t

id,base(a) baseline disease d incidence rate at age a

1-year event incidence probabilities were calculated from
the rate values assuming constant values over the year.
These probabilities are still denoted as id(t). The preva-
lence rates change as a result of incidence and mortality.
This equation is known as the DisMod-equation [28].

pd(t + 1) = pd(t) + id(t)(1 - pd(t)) - emd(a(t))pd(t)(1 - pd(t))
(12)

with: emd(a) disease d related excess mortality probability
at age a.

The parameter emd(a) is the excess mortality related to
disease d. It describes the additional mortality in the pop-
ulation with disease d as compared to the population
without disease d (see the online appendix of [22]). The
parameter amd(a), that was defined before, describes the
additional mortality rate, conditional on all risk factors
and other disease states. The parameter amd(a) can be
interpreted as the mortality that uniquely can be attrib-
uted to disease d. It adjusts the excess mortality for mor-
tality due to co-morbid diseases. The part (1 - pd(t)) in the
last term of the equation comes from describing changes
of prevalence rates instead of numbers.

Model post-processing component
The model output variables are computed from the results
in the simulation component. These are the following:

Disease incidence numbers

QALYs generated (accumulated)

with: 

Id(t) disease d incidence numbers during 1-year period
[t,t+1)

QALY quality-adjusted life years

wd(a) disease d weight coefficients at age a

The weight coefficients wd(a) describe the relative loss of
quality of life value due to the disease. A value 0 means
there is no loss of quality of life due to the disease; a value
1 indicates there is complete loss of quality of life, and
that having the disease is no better than being dead.

Appendix 2: Relapse rates that depend on time 
since smoking cessation
First we present the statistical regression model that
describes how relapse rates depend on the time since
smoking cessation. Second, we describe how the regres-
sion parameters were estimated based on data available
from a retrospective study on smoking behavior. Third,
the resulting parameter estimates are presented.

Statistical model
The relapse rates are the rates at which former smokers
restart smoking. They depend on the time since smoking
cessation. Our formal model is defined in continuous
time. Subsequently, the 1-year probabilities of relapse
used in our simulation model were calculated by integrat-
ing the rate values over time. Following the literature [1]
we assumed that the proportional decrease of these
relapse rates is constant over time, meaning that the
relapse rates are highest shortly after cessation, and dimin-
ish in the long run. As a result of this assumption, the
relapse rates follow a negative-exponential curve.

λrelapse(s) = αβ exp(- βs) (15)

with: 

s time since smoking cessation [months]

I t i t N td d c
c

( ) ( ) ( )= ∑ (13)

QALY N t w a t p tc d d
dt

= −∏∑ ( ) ( ( ( )) ( ))1 (14)
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λrelapse smoking relapse rate

α, β regression coefficients.

The parameter β (unit: [month]-1) governs how fast the
relapse rates decline with time since smoking cessation.
The parameter α governs the lifetime probability of no
relapse. The lifetime probability of no relapse depends on
the relapse rates accumulated over the entire lifespan.
Thus:

with S(t|α,β) the probability of no relapse until time t.
This result shows that quitters have a positive probability
of never relapsing. Since our model uses 1-year time-steps
we did not use relapse rates but 1-year probabilities of
relapse. These probability values are calculated as integrals
over 1-year time periods. For example, the probability of
relapse in class s1, i.e. between the time points s1 and s1+1
conditional on no relapse until time s1, is:

Estimation procedure
The parameters α and β were estimated from a series of
cross-sectional population surveys on smoking behavior.
The samples were representative for the Dutch population
aged 15 years and above [2,33]. Data were collected in the
years 2000–2003. The complete questionnaire used is
reproduced in Cappanesi et al.[32], and includes ques-
tions regarding current smoking status as well as past
smoking behavior of the responders. These data were used
to estimate the model parameters α and β in the following
way.

Firstly, we calculated the numbers of quitters. The 1-year
quit probabilities were calculated from the survey by
dividing the number of current non-smokers that smoked
1 year ago by the total number of smokers 1 year ago,
based on answers in the retrospective survey. These prob-
abilities were multiplied with the proportion of current
smokers available from the survey and the total popula-
tion numbers available from Statistics Netherlands [24] to
get the numbers of quitters for each age class.

Nstop(a) = λstop(a)pcurrent(a)N(a) (18)

with: 

a age

Nstop(a) 1-year number of quitters at age a

pcurrent(a) proportion current smokers at age a

N(a) total population numbers at age a

λstop(a) 1-year quit probability of current smokers

Given trial values α and β, we calculated for each group of
quitters specified by age at cessation how many quitters
were still abstinent over time using the probability of
relapse function.

Nformer(a,d|α,β) = Nstop(a - d)S(d|α,β) (19)

with: Nformer(a,d|α,β) number of persisting former smok-
ers at age a that

quitted d months ago

The notation shows that the calculated number of non-
relapsing former smokers depends on the parameters α
and β. This dependency will also be shown for all varia-
bles to follow. As a result, for each age class the distribu-
tion of all former smokers over time since smoking
cessation was calculated using the absolute numbers of all
quitters that are abstinent until that age.

with: 

pcalc(a,d|α,β) calculated proportion of former smokers at
age a who

quitted d months ago

Then we calculated a weighted sum of squares to describe
the fit of the calculated proportions to the empirical pro-
portions. The terms of this weighted sum are the squared
differences between the expected proportions of former
smokers that quitted d months ago from formula 20 and
the same proporiton calculated from the data, weighted
by the total numbers of former smokers in the ageclass
concerned. We aggregated these terms over all classes and
over age.

S S t

s s

t

t
relapse

t

t

( | , ) lim ( | , )

lim exp( ( ) )
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∞ =

= − ∂

=

→∞

→∞

→

∫

α β α β
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0
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with: 

pemp(d|a) the empirical distribution of all former smokers
at age a over

time since cessation classes d

SS(α,β) weighted sum of squares

The empirical distribution of all former smokers
pemp(d|a) was available from the cross-sectional popula-
tion survey on smoking behaviour [2]. We used a grid
search to minimize the sum of squares. The resulting
parameter values α and β are called the estimated values
calculated by the method of weighted least squares.

At first, we estimated the parameters α and β for several
age classes separately to check for different declines of
smoking relapse rates over age. However, since the
number of former smokers was too small for lower and
middle ages, we concluded that we could not identify any
effect of age, and thus assumed parameter values that were
different between both sexes but constant over age.

Results

Estimated parameter values for  and  for men are

1.177 and 0.150. Estimated parameter values for  and

 for women are 1.197 and 0.113.

Appendix 3: Relative risks that depend on time 
since smoking cessation
In this appendix the methods used to calculate relative
risks of former smokers that depend on time since smok-
ing cessation are described. Two different methods were
used to estimate the regression parameters, depending on
the data available. The first method was used for diseases
with sufficient data on relative risks of former smokers
specified by time since cessation. The second method was
used when these data were not available. In the latter case
we estimated the regression parameter from the distribu-
tion of all former smokers over time since cessation (see
Appendix 1) and mean relative risks of all former smok-
ers.

Statistical model
The statistical model is defined for the relative risks of
former smokers compared to never smokers as a function
of the time since smoking cessation. These relative risks
comprise both all cause mortality and incidence of
chronic diseases. The relative risks of former smokers
decrease over time since cessation, meaning that the effect

of past smoking behavior gradually disappears. We made
the following assumptions:

- The relative risk of quitters equals the relative risk of cur-
rent smokers.

- The relative risk of former smokers approaches the rela-
tive risk of never smokers, i.e. value 1.

- Relative risks of former smokers show a time-constant
proportional decrease.

- The proportionality coefficients that describe the rate of
decrease over time of the relative risks decrease propor-
tionally over age

These assumptions result in the following formulas for
the relative risk:

with: 

a age

a*(a) transformation of a, a*(a) = (a-50)+: the non-nega-
tive value of a-50

s time since smoking cessation

γ regression coefficient of time dependency

η regression coefficient of age dependency

RRcurrent(a) relative risks of current smokers at age a

RRformer(a) mean relative risks of all former smokers at age
a

The parameter γ0 is the reference value of parameter γ, i.e.
the value of γ for age 50 years. We chose age 50 years as
the origin, since we could not identify any age gradient for
lower ages (see below). As a consequence, we assumed
age-constant rates of decrease over time for these ages.
Thus, in the statistical model applied in our simulation
model the term (a-50) was replaced by the term (a-50)+.

Estimation of regression parameters from cohort studies 
stratified by time since cessation
To estimate the regression coefficients γ and η for each
smoking-related relative risk, we used data from major
cohort studies presented in literature [6-8,35-42]. To be
included, studies had to present relative risks that were

ˆ , ˆ arg min ( , ),α β α βα β= SS (22)

α̂ β̂

α̂

β̂

RR a s RR a a s

a a
former current( , ) ( ( ) )exp( ( ) )

( ) exp( *

= + − −
= −

1 1

0

γ
γ γ η (( ))a

(23)
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adjusted for at least gender and age, and the time since
smoking cessation had to be subdivided in at least three
classes with reported cut-off points. We estimated the
regression coefficient γ by the method of least squares. For
each study we checked whether the published relative risk
of current smokers matched the extrapolated one based
on the curve of relative risks of former smokers. If so, we
added this relative risk value (with time since smoking
cessation 0) to the reported ones for former smokers, and
re-estimated the rate of proportional decrease. We
included these relative risks of current smokers to improve
the precision of our estimation. Only for some forms of
cancer among which lung cancer we found differences
between reported and extrapolated relative risks of current
smokers. These differences point at a reversal of causality:
getting lung cancer is a reason to quit smoking. We plotted
the calculated relative risk curves and data points
regressed on the time since smoking cessation to check the
model fit for each study separately.

Next, all regression coefficients γ calculated were plotted
regressed on age to check the assumption of age-constant
proportional decrease. Our state-transition model uses 1-
year time-steps, whilte most cohort studies have much
longer follow-up time periods. Thus, in the cohort studies
the age at baseline is not the age at event. Therefore we
used the estimated age at event for age a in the formula on
γ(a) instead of the reported age at baseline. The age at
event was calculated assuming a Gompertz-type event
rate. I.e., we assumed that the event rate λ increases expo-
nentially with age a, i.e. λ(a) ∝ exp(a c). We assumed that
the rate of increase of all event rates with age was equal to
the one for all cause mortality. We estimated this rate
value using Dutch mortality data that were available from
Statistics Netherlands.

If we found an age-dependent proportional decrease of
the rate of change of relative risks with time since cessa-
tion, we estimated the regression coefficient η by the
method of weighted least squares. For ages lower than 50
years we had not enough data to identify any relation with
age, and thus assumed constant values of parameter γ.
Only for all cause mortality we had sufficient data to iden-
tify the model parameters specified by age. Based on the
data we could find no differences between men and
women.

Estimation of regression parameters from one relative risk 
value for all former smokers
If no data were available from cohort studies we estimated
the regression parameters from reported relative risk val-
ues of all former smokers together, and used the calcu-
lated distribution of all former smokers over time since
cessation (see appendix 1). The parameters were esti-
mated by the method of weighted least squares, where the

weights were the number of former smokers for each age
class.

Using formula (21) we can write the mean relative risk
value of all former smokers as a function of the parame-
ters γ0 and η of the regression model. We simplified the
formula by taking the first order approximation of the
exponential function.

with: Eformer(s|a): the mean time since cessation of all
former smokers at age a. This equation results in an equa-
tion on the two parameters γ0 and η0:

with: 

η0 transformed parameter value; η0 = η γ0

RRformer(a) the data mean relative risk value of all former
smokers

The latter equation was solved within the framework of
weighted linear regression:

(γ0, η0) = (XWXT)-1XTWy (26)

with: X design matrix, i.e. with as columns the independ-
ent variables Eformer(s|a)

and a*(a) Eformer(s|a) for (rows) all age classes

W diagonal weight matrix, with values nformer,0(a)
Npop,0(a), the number of

former smokers for all age classes

y response vector, i.e. with as elements the empirical val-
ues of the right hand side of equation (25).

We assumed that the decline of the relative risks of former
smokers decreased with age. As a result, if equation (24)
resulted in a negative value of parameter η0 we re-esti-
mated parameter γ0 with fixed value η0 = 0.

Results
Table 2 displays estimations of parameters γ0 and η for all
14 smoking related diseases distinguished in the CDM.

RR a RR a a a s nformer current forme( ) ( ( ( ) )exp( exp( *( ) ))= + − − −1 1 0γ η rr
s
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s

s a

RR a a a s n s a

( | )

( ( ) ) ( ( *( )) ) ( | )

∑
≈ + − − −1 1 1 10γ η∑∑
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γ0 η

AMI 0.24228 0.05822
Other CHD 0.24228 0.05822
CHF* 0.0421371 0
CVA 0.31947 0.01648
COPD 0.20333 0.03087
Diabetes* 0.024811 0
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cessation (see Appendix 3).
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