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Abstract 

Dealing with randomness is a crucial aspect that cost-effectiveness analysis (CEA) tools need to address, but exist-
ing stochastic CEA tools have rarely examined risk and return from the perspective of population benefits, con-
cerning the benefits of a group of individuals but not just a typical one. This paper proposes a stochastic CEA tool 
that supports medical decision-making from the perspective of population benefits of risk and return, the risk-
adjusted incremental cost-effectiveness ratio (ICER). The tool has a traditional form of ICER but uses the cost 
under a risk-adjusted expectation. Theoretically, we prove that the tool can provide medical decisions trimming 
that promote the risk-return level on population benefits within any intervention structure and can also serve as a cri-
terion for the optimal intervention structure. Numerical simulations within a framework of mean–variance support 
the conclusions in this paper.

Key points for decision makers 

• The typical assumption in classical CEA that all get the new intervention versus standard of care may not be 
the best to achieve the best outcome to population, a mixed structure can be better

• The intervention structure should be modified using a criterion considering slight changes on the structure 
of the treatment mix.

• Use a risk adjustment concerning cost and outcome uncertainties in taking expectation in ICER calculation gives 
the optimal treatment mix for population benefits.

Keywords Stochastic cost-effectiveness analysis, Population benefits, Risk allocation, Return on risk

Introduction
The classical cost-effectiveness analysis (CEA) framework 
is of high importance in deterministic medical decision-
making, and it has been widely applied in both theoreti-
cal and practical problems. Moreover, accounting for 
uncertainty has gained much attention. Some tools are 

developed in the framework probabilistic dominance 
analysis, using the CEA result under different random 
scenarios to get a judgement with uncertainty. For exam-
ple, the cost-effectiveness acceptability curve (CEAC, see 
Stinnett and Mullahy [1]) uses different monetary stand-
ard in judging the probability of a new intervention to be 
cost-effective, and finally propose the curve describing 
the probability of the intervention to be accepted under 
different monetary standard. Another kind of tools use 
risk-adjusted performance measurement (RAPM) to deal 
with the net monetary benefit (NMB), to determinate 
if the NMB is positive when taking the risk of expenses 
and outcomes as a kind of cost. For example, the 
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cost-effectiveness risk-aversion curve (CERAC, see Sendi 
[2]) uses the downside variance as a measure of risk and 
measuring the benefit-to-risk ratio as a RAPM to gener-
ate the curve. These tools present effective approaches for 
making medical decisions under uncertainty (see Al [3]). 
However, Sendi et  al. [4] show that the most frequently 
used CEACs still have many weak points, as it is not 
sensitive to the changes of radial shifts of the joint dis-
tribution of incremental costs and effects in the North-
East and South-West quadrants of the cost-effectiveness 
plane. Also, the level of risk aversion is not fully collabo-
rated into these existing tools.

Besides, other challenges confront the existing sto-
chastic CEA methods. Correlation structure problems 
are noted by Barton et al. [5], showing that the correla-
tion between the costs and outcomes will weaken the 
reliability of the conclusions of existing stochastic CEA 
tools. Also, it is mentioned that correlations of outcomes 
among different opinions from different individuals will 
also influence the judgment. Asymmetric uncertainty 
issues, as highlighted by Jakubczyk et  al. [6], which can 
stem from small-sized samples, also could make troubles. 
This issue could cause the intervention with higher cost-
effective probability to get a negative incremental net 
benefit. Moreover, the sub-optimality of a unique inter-
vention, as mentioned in Sendi et al. [7], exists because of 
the heterogeneity of patients. The population of patients 
may consist of different etiologies or genotypes, and 
some are more suitable to the new intervention but some 
are not.

The challenges arising from correlation structures 
and the constraints from unique interventions can be 
addressed through the application of population benefits 
analysis tools. A population benefits analysis is to analy-
sis the costs and outcomes, with consideration about 
risks and uncertainties, for a group of individuals instead 
of unique or typical ones. For the correlation structure 
problem, population benefits analysis can effectively dif-
ferentiate the correlation of benefits for different patients 
within the same intervention and the correlation between 
different interventions’ outcomes and costs. Also, for the 
problem of the constraint of the unique intervention, a 
patient cannot choose to receive two interventions simul-
taneously, but a population of patients can choose to mix 
different interventions proportionally.

Furthermore, specific choices and assumptions in 
some methods have also been challenged in practical 
applications. Elbasha [8] compared the risk-adjusted 
performance measure of CERAC with other methods 
and found that choosing the Sortino ratio as a RAPM 
implies a highly risk-averse assumption, which causes 
the method to fail when the real level of risk aversion is 
not high. Kim et al. [9] also show that most studies lack 

proper considerations when selecting broader evaluation 
perspectives. Lomas [10] directly points out the non-
marginality issue of existing methods, which may cause 
seemingly cost-effective interventions to be rejected in 
actual applications. A large proportion of the judgements 
are made under the current situation, which will only be 
reliable if the change is tiny enough. However, the sugges-
tion of these judgements directly aims at further changes, 
which is out of the margin of the present one and hard 
to be reasonable. Paulden [11] challenges the function 
of traditional ICER as a “distance” by pointing out its 
impossibility on intervention ranking. These findings col-
lectively suggest that a risk-adjusted ICER concerning on 
the benefits of the population with marginal judgements 
needs to be developed.

To this end, this paper proposes a stochastic cost-effec-
tiveness analysis tool aiming at enhancing population 
benefits. We also present a discriminant tool for judging 
whether a medical decision changing an intervention to 
another for a small part of the population would contrib-
ute to this goal. Furthermore, we propose the analytical 
expressions for the discriminant measure in a traditional 
ICER form with good economic interpretation. Also, the 
properties and superiority of the proposed approach are 
shown with numerical simulations with some general 
assumptions on mean and covariance matrix. At last, the 
feasibility and excellence of the mixed interventions is 
verified by an empirical example.

The optimization problem of population benefits
Population benefits refer to the total level of benefits 
for a specific group of patients. Different from the clas-
sical individual benefits problem, population benefits 
assess the total benefit level for all patients in the group. 
A group of patients with a specific condition, namely a 
patient population, may have different socio-demo-
graphic characteristics, may have different concomitant 
conditions, may have a different treatment history for 
the specific condition and may respond in different ways 
to the new intervention if they choose to try it. There-
fore, population benefits analysis should be introduced 
to allow for the coexistence of different medical inter-
ventions and also takes the variability and correlation 
among the patients into account. The stochastic optimi-
zation problem aimed at the population benefits forces 
maximizing the overall population benefits by solving 
for the optimal structure of medical interventions while 
accounting for the patient heterogeneity.

Model settings
Consider a specific population of patients, and the num-
ber of patients in the population is denoted as M. There 
are N optional interventions that may be effective for this 
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population, with each intervention possessing poten-
tial or existing feasibility. Let Mi represent the number 
of patients in the group who have received the ith inter-
vention, where i ∈ {1, 2, . . . ,N } . Every patient requires 
an intervention, hence 

∑N
i=1M

i = M . The vector 
M = {M1,M2, . . . ,MN } , composed of all Mi values, rep-
resents the intervention structure adopted by this patient 
population. It is worth noting that some patients may not 
be taking any intervention, and “to take no intervention” 
is also a kind of intervention, named “Null Intervention” 
in our settings.

The net monetary benefit (NMB) is a measurement 
used to determine an individual’s benefit level in mon-
etary. This calculation employs a monetization coefficient 
λ to convert the quality-adjusted life-year (QALY) that a 
patient receives through a given intervention to a mon-
etary value and forms a monetization return measure in 
summary. For the patient mi who receives the ith inter-
vention, their level of NMB, Xi

mi , is defined as:

As the costs incurred by patients during the interven-
tion and their QALY outputs are stochastic, each Xi

mi 
represents a random variable. These random variables 
representing NMB levels belong to a random space, 
(�,F ,P) . For any i, the expected value of Xi

mi is denoted 
as E[Xi

mi ] = µi . It is generally assumed that {Xi
mi} has 

cross-moments of any order, which means that one could 
calculate the moments of these variables in any orders.

Under a given intervention structure M, the popula-
tion benefits S(M) of the studied population can be deter-
mined by summing up the NMB of each case. Therefore, 
the following definition is proposed.

Definition 1 (Population Benefits) We define the pop-
ulation benefits for the population of the patients with 
some specific conditions as a function S(·) : RN �→ R 
that is N-dimensional. Specifically, given an intervention 
structure M, we express S(M) as:

Optimization problem
The stochastic optimization problem for population ben-
efits is to find the optimal intervention structure M*, 
which balances the expected benefits of the population 
and the risk level of them. This means that we want to 
get a higher population benefit in average, but do not 

(1)Xi
mi := �QALYi

mi − Costi
mi , ∀mi ∈ {1, 2, . . . ,Mi}, i ∈ {1, 2, . . . ,N }.

(2)S(M) =

N
�

i=1





Mi
�

mi=1

Xi
mi



.

want it to be too volitive. That could be done by optimiz-
ing a risk-adjusted performance measure on the popula-
tion benefits. A risk-adjusted performance measure is a 
functional taking the average benefit and its uncertainty 
into consideration. It is monotonically increasing with 
respect to the expectation on benefits, but with risk pen-
alties. Typical stochastic CEA studies use specific risk-
adjusted performance measures, such as the Sharpe ratio 
and the Sortino ratio, to measure such trade-offs by pur-
suing expectation while controlling variance. This article 
employs a more generalized family of risk-adjusted per-
formance measures, E[·]/ρ(·) , as the target functional of 
population benefits in risk-return trade-offs, where ρ(·) 
is a one-dimensional non-negative functional used to 
represent the risk measure applied to the random vari-
able of the population benefits (see Artzner et  al. [12]). 
The risk measures commonly utilized in typical stochas-
tic CEA research include variance (such as in the case of 
deterministic equivalence under the Constant Absolute 

Risk Aversion framework), standard deviation (such as 
in the case of the Sharpe Ratio), and downside deviation 
(in the case of the Sortino Ratio). Additionally, other risk 
measures such as value at risk (VaR) and conditional tail 
expectation (CTE) are employed in more generalized 
researches of risk.

Under the risk-adjusted performance measure, the tar-
get function of the stochastic optimization problem in 
this paper, which represents the risk-return ratio of pop-
ulation benefits, can be expressed as

With this objective, subject to the constraint 
∑N

i=1M
i = M , the stochastic optimization problem can 

be represented as:

Similar to the discussion in Buch et  al. [13], when M 
is sufficiently large, the risk measure is sub-additive, 
and ρij ∈ (0, 1),∀i, j , the optimization problem (4) has 
a unique positive inner solution, denoted as M*. This 
inner solution represents the optimal intervention struc-
ture that maximizes the risk-return ratio of population 
benefits.

(3)U(M) =
E(S(M))

ρ(S(M))
.

(4)max
M

U(M), s.t.
�M�1

M
= 1.
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The necessary conditions for the optimal solution 
of the problem
Assuming that M is sufficiently large, we can assert that 
U(M + e

i)− U(M) can be approximated by ∂U(M)/∂Mi , 
where ei is an N-dimensional basis vector with the ith 
element being 1 and the remaining elements being 0. 
Under this situation, the optimization problem (4) can be 
solved using the Lagrange method. Specifically, the fol-
lowing theorem specifies the necessary conditions that 
the optimal intervention structure should satisfy.

Theorem  1 Assuming that M is sufficiently large, the 
inner solution for the optimization problem expressed in 
formula (4), which is the optimal intervention structure 
M, must satisfy the following necessary conditions:

where γ is a non-zero constant.

Proof of Theorem  1 For Eq.  (4), We construct the 
Lagrange function,

where γ is the Lagrange parameter which must be non-
zero due to the nature of the constraints. Thus, the inner 
solution must satisfy the condition ∂L(M, γ )/∂Mi = 0 
for any i, then we can get

which are necessary conditions. Moreover, the properties 
of risk measures stipulate that ρ(S(M))  = 0 , then we get 
Eq. (5).  □

Theorem  1 shows that under certain conditions, the 
optimal intervention structure can be obtained by solv-
ing the system of equations composed of Eq.  (5) and 
∑N

i=1M
i = M . For medical decision-making situations 

with adequate decision independence, selecting the 
intervention structure derived from solving these equa-
tions can lead to the maximum risk-return ratio of the 
population benefits.

Stochastic cost‑effectiveness analysis
In general, the medical decision-making is often limited 
by various internal and external factors. It is challeng-
ing for decision-makers to fully reconstruct the optimal 

(5)
µiρ(S(M))− E[S(M)]

∂ρ(S(M))

∂Mi

= γρ2(S(M)), ∀i ∈ {1, 2, . . . ,N },

(6)L(M, γ ) =
E(S(M))

ρ(S(M))
− γ

(

N
∑

i=1

Mi −M

)

,

(7)
µi

ρ(S(M))
−

E[S(M)]

ρ2(S(M))

∂ρ(S(M))

∂Mi
− r = 0, ∀i,

intervention structure of the group within a single period. 
To face this situation, we introduce the stochastic cost-
effectiveness criterion for population benefits for that any 
two interventions could be compared. One can also find 
the similarities and differences between the tools in this 
paper and traditional CEA from the criterion.

From a population perspective, the superiority of one 
intervention over another can be understood in a form 
of marginal contribution. In other words, if the interven-
tion for a unit of patients switches from one to another 
and the RAPM of the population benefits increase, then 
the latter intervention can be considered to be marginally 
superior to the former. With the model framework and 
theorem presented earlier, we can obtain the marginal 
optimization theorem for population benefits, which 
enables us to determine whether one of any two interven-
tions satisfies the superiority criterion for stochastic CEA 
over the other under the current situation.

Marginal optimization theorem for population benefits
The marginal criterion for stochastic CEA on population 
benefits can be expressed through the following theorem.

Theorem 2 (Marginal optimization theorem for popu-
lation benefits): The equivalence criterion for an interven-
tion to dominate another in a population sense is that the 
additional risk-adjusted expected cost to obtain a unit 
increase in expected QALY is less than the monetization 
factor �.

Mathematically, for any i, j ∈ {1, 2, . . . ,N } , if 
E[QALYj] − E[QALYi] > 0 , then

where EQ[Costj] is the risk-adjusted expected cost under 
the intervention j, defined as

and α(M) = E(S(M))/ρ(S(M)) is the current level of 
risk-return for population benefits.

Proof of Theorem  2 First, the substitution definition, 
D(c) = U(M − cei + cej) , denotes the return-to-risk 
level of population benefits after transferring patients of 
an amount of c from intervention i to intervention j. By 
the definition of partial derivatives, D(·) ’s continuity for c 
and the uniform integrability of S(M), there is

(8)
lim
c→0+

U(M − ce
i + ce

j)− U(M)

c
>

0 ⇔
E
Q[Costj] − E

Q[Costi]

E[QALYj] − E[QALYi]
< �,

(9)E
Q[Costj] = E[Costj] + α(M)

∂ρ(S(M))

∂Mj
,
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and then only the equivalence condition of lim
c→0+

∂D(c)
∂c > 0 

needs to be examined.

Since we have

we can obtain

Since ρ(S(M)) > 0 , the equivalence condition for 
lim
c→0+

∂D(c)
∂c > 0 can be expressed as

and there is ∀i, µi = �E[QALYi] − E[Costi] , which is 
substituted to express the equivalence condition as

Noting that

there is

then the theorem is proved with E[QALY
j
]

−E[QALY
i] > 0 .  □

(10)
lim
c→0+

∂D(c)

∂c
= lim

c→0+
lim

�c→0+

D(c +�c)− D(c)

�c

= lim
c→0+

U(M − ce
i + ce

j)− U(M)

c
,

(11)∂D(c)

∂c
=

U(M − cei + cej)

∂Mi

∂(Mi − c)

∂c
+

U(M − cei + cej)

∂Mj

∂(Mj + c)

∂c
,

(12)

lim
c→0+

∂D(c)

∂c
= −

∂U(M)

∂Mi
+

∂U(M)

∂Mj

= −
µi

ρ(S(M))
+

E[S(M)]

ρ2(S(M))

∂ρ(S(M))

∂Mi
+

µj

ρ(S(M))
−

E[S(M)]

ρ2(S(M))

∂ρ(S(M))

∂Mj

=
1

ρ(S(M))

(

µj − µi −
E[S(M)]

ρ(S(M))

(

∂ρ(S(M))

∂Mj
−

∂ρ(S(M))

∂Mi

))

=
1

ρ(S(M))

(

µj − µi − α(M)

(

∂ρ(S(M))

∂Mj
−

∂ρ(S(M))

∂Mi

))

.

(13)

µj − µi − α(M)

(

∂ρ(S(M))

∂Mj
−

∂ρ(S(M))

∂Mi

)

> 0,

(14)�E[QALYj] − �E[QALYi] − E[Costj] + E[Costi] − α(M)

(

∂ρ(S(M))

∂Mj
−

∂ρ(S(M))

∂Mi

)

> 0.

(15)E
Q[Costj] = E[Costj] + α(M)

∂ρ(S(M))

∂Mj
,

(16)
�

(

E[QALYj] − E[QALYi]

)

> E
Q[Costj] − E

Q[Costi],

It can be seen that Theorem 2 provides a way of com-
paring the marginal cost-effectiveness of any two inter-
ventions when considering uncertainty. The expression 
on the left-hand side of Eq.  (8) measures the change in 
the risk-return ratio of population benefits when switch-
ing from intervention i to intervention j on a small unit 
of patients. The expression on the right-hand side of 
Eq.  (8) measures the incremental risk-adjusted expected 
cost required to achieve one unit of incremental QALY, 
by transforming from intervention i to intervention j. 
In other words, under the current intervention struc-

ture, an intervention switch results in an incremental 
risk-adjusted expected cost ratio for gaining incremental 

QALY less than � is beneficial to the risk-return ratio of 
population benefits.

It is worth noting that although the criterion in Theo-
rem  2 has a form similar to that of classical ICER, the 
main difference lies in the measurement of “expected 
costs”. Here, the incremental expected cost needs to be 
measured from the perspective of risk adjustment, that 
is, considering the “implicit” adjustment corresponding 
to the risk. In the definition formula, Eq. (9), of the risk-

adjusted expected cost, α(M) is the risk-return level for 
population benefits under the current intervention struc-
ture, which can be understood as the current return-to-
risk rate. The ∂ρ(S(M))/∂Mj is a risk allocation method 
(often called a marginal allocation, see Denault [14]) and 
can be understood as the risk level allocated to one unit 
of patients receiving intervention j when the risk meas-
ure of the population benefits is ρ(S(M)) . It is worth not-
ing that although it is named as “risk-adjusted expected 
cost”, it does not mean that the adjustment only consid-
ers the risk in costs. Instead, all risks and uncertainties 
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are taking into consideration, containing the risks of 
costs and outcomes. The name is just because the adjust-
ment is made on the term of cost. Furthermore, the risk-
adjusted expected cost can be understood as the sum of 
the expected cost (used in classical CEAs) and the risk 
cost allocated to the intervention. And then, the criteria 
are constructed using such risk-adjusted expected costs.

Risk‑adjusted ICER
The criterion in Theorem 2 uses a specific form of ICER 
as a measure to discriminant the superiority of any two 
interventions measured under the consideration of sto-
chasticity. Such a criterion is defined as the risk-adjusted 
ICER due to the utilization of risk-adjusted expected 
costs.

Definition 2 (Risk-adjusted ICER): Under the inter-
vention structure M, if E[QALYj] − E[QALYi] > 0 , the 
risk-adjusted ICER, ICERQ

i,j(M) , of switching intervention 
from i to j, is defined as:

where EQ[Costj] is the Risk-Adjusted Expected Cost 
under intervention j, defined as:

and α(M) = E(S(M))/ρ(S(M)) is the risk-return level of 
the current population benefits.

It can be seen that risk-adjusted ICER is an incremen-
tal cost-effectiveness ratio based on the risk-adjusted 
expected cost. Therefore, risk-adjusted ICER is a gener-
alization of classical ICER considering all sources of risks. 
Compared with other CEA methods that consider sto-
chasticity, risk-adjusted ICER has several typical advan-
tages. First, from the perspective of the risk-return ratio 
of population benefits, risk-adjusted ICER allows differ-
ent interventions to coexist, solving the “either black or 
white” challenge faced by classical CEA for individuals. 
Second, risk-adjusted ICER is a marginal discriminant 
condition that incorporates the current intervention 
structure into the decision of optimality, allowing medi-
cal decision-makers to gradually adjust interventions. 
This means that the decision is made under the current 
situation, which ensured the reliability. Third, the risk-
adjusted ICER accommodates any degree of risk aversion 
in the risk measure selection, allowing medical deci-
sion-makers to select any risk measure for CEA analysis 
without the need for special discriminant tools for each 
measure. Finally, risk-adjusted ICER retains the classical 

(17)ICER
Q
i,j(M) =

E
Q[Costj] − E

Q[Costi]

E[QALYj] − E[QALYi]
,

(18)E
Q[Costj] = E[Costj] + α(M)

∂ρ(S(M))

∂Mj
,

ICER form, and the monetization constant � remains 
unchanged from the original setting, ensuring the explicit 
distinction between cost and QALY in the expressions.

Technically, it is worth adding the condition, 
E[QALYj] − E[QALYi] > 0 , which actually only requires 
a specified order of intervention i and intervention j 
according to their E[QALY] values when comparing 
the two interventions. Indeed, excluding interventions 
that are exactly equivalent in expected QALY, the set of 
situations with superiority of j over i and situations of i 
over j are complementary. The decision result can be 
obtained by comparing in any determined order. In other 
word, one can always choose the intervention with larger 
expected QALY to be the intervention j, and use these 
two Theorem to may decisions. This means that the con-
dition is without loss of generality, and therefore, both 
Theorems 1 and 2 are stated under a specified order, and 
they also have equivalent dual forms in the other order, 
which will not be repeated here.

Numerical and empirical examples
In order to further clarify the properties of the method 
proposed in this paper and demonstrate its associa-
tion and difference with classical CEA tools, we per-
form numerical simulations to calculate the results, 
differences, and effectiveness of various types of uncer-
tain CEA tools. Further, we take an empirical example 
to show that the mixed structure of interventions could 
get a higher population benefit, and the tool in this paper 
helps to find it.

Stochastic system settings
We choose the mean–variance system to describe the 
stochasticity of the simulation system to simply and clar-
ify the simulation processes and results. It is assumed 
that the joint distribution of the costs and QALY out-
comes of individuals receiving various interventions fol-
lows an overall joint multinormal distribution. Therefore, 
characterizing all the stochasticity can be accomplished 
by setting the means, standard deviations, and the matrix 
of the correlation coefficient. For each intervention, it 
is assumed that the costs and QALY outcomes of each 
patient taking this intervention are identically distributed 
but not independent. And, there is a certain correlation 
between the costs and QALY outcomes of individual 
patients. The correlation between patient costs of dif-
ferent interventions is only related to the intervention 
they take, but without distinguishing individuals. Same 
assumption applies to QALY outcomes. In addition, it is 
assumed that the cost of any patient is independent of the 
QALY outcome of other patients, which means that the 
cost of patient A does not correlate with the QALY out-
come of any patient B.
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Correlation matrix can express the structure of cor-
relation much clearer. Specifically, for each group of 
patients taking the same intervention, the costs and 
QALY outcomes of each patient have unique mean and 
variance values. That is, for any i and mi, we have

And for the correlation coefficient of each cost, there is

and for each QALY there is a similar equation

In addition, the cross-sectional relationship between 
cost and QALY output is assumed as

The structure of each correlation is schematically 
shown in the following Fig. 1.

Simulation methods and settings
Given a selected intervention structure, the numeri-
cal simulation uses Monte Carlo sampling to form a 
column vector that combines the costs and QALY out-
puts of each patient under the assumed parameters. A 

(19)
E[QALYi

mi ] = µi
Q, Var[QALYi

mi ] = (σ i
Q)

2⊖,

E[Costi
mi ] = µi

C , Var[Costi
mi ] = (σ i

C)
2.

(20)

∀i, j, Corr[Costim1
, Cost

j
m2 ] =







1, i = j, m1 = m2

ρii
C , i = j, m1 �= m2

ρ
ij
C , i �= j,

(21)

∀i, j, Corr[QALYim1 , QALYjm2 ] =











1, i = j, m1 = m2
ρiiQ , i = j, m1 �= m2

ρ
ij
Q , i �= j.

(22)

∀i, j, Corr[Costim1 , QALYj
m2 ] =











ρi
QC , i = j, m1 = m2

ρii
QC = 0, i = j, m1 �= m2

ρ
ij
QC = 0, i �= j.

sufficient number of samples are generated and the sta-
tistical features of the overall results (such as population 
benefits and total costs) are calculated. Then, the results 
of the objective function under the given intervention 
structure are obtained. Following this, different stochas-
tic CEA methods are applied to this problem to get their 
own judgements on optimal interventions. Performance 
of population benefits are compared with these opti-
mal interventions. Moreover, simulations are performed 
again for each method’s recommended intervention 
structure modification, showing the effect of recom-
mendations for different stochastic CEA methods’ judge-
ments. Some key intermediate results are also recorded 
and presented.

Simulation process
The purpose of simulation mainly lies in three aspects. 
Firstly, illustrating through numerical examples that, 
in terms of population benefits, the mixture of different 
interventions could have a better return-to-risk result 
than an absolutely unique intervention. Secondly, under 
different intervention structures, calculating the risk-
adjusted expected cost and risk-adjusted ICER proposed 
in this paper, and verifying the process of inducing the 
optimal risk-return ratio of population benefits in a mar-
ginal sense. Thirdly, comparing the decisions generated 
by different stochastic CEA methods for the same prob-
lem, testing the performance of different methods on 
population benefits, and checking their suggested direc-
tion of optimization.

Specifically, we first select two interventions from all 
optional ones, separately calculate their risk-return levels 
of population benefits, and then mixes them in different 
proportions to form intervention structures. Secondly, 
under different intervention structures, the risk-adjusted 
expected cost and risk-adjusted ICER of the two 

Fig. 1 The correlation between different random variables
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interventions are calculated, along with the correspond-
ing decisions that the criterion makes for optimizing the 
target function. Then, to show the effectiveness of each 
method, a specific intervention structure is selected, and 
different stochastic CEAs are used for making determina-
tions between any two interventions. The changes in the 
performance of population benefits are measured after 
adjusting the intervention structure according to the cor-
responding determination. These changes can show the 
effectiveness of different methods.

In the simulation process, it is necessary to simulate the 
QALY outcomes and costs under the selected interven-
tion and evaluate the population benefits quantitatively. 
In detail, under each selected intervention structure M, 
the evaluation of the return-to-risk ratio of the popula-
tion benefits level consists of the following steps in the 
simulation process:

1) Divide the M simulated patients into N groups, 
where the ith group has Mi patients according to the 
structure of M.

2) Combine the random variables of cost and QALY 
output of each patient into a random vector and cal-
culate the mean and covariance matrix of the ran-
dom vector.

3) Generate 10,000 samples of the group using the cal-
culated mean and covariance matrix as the param-
eters of a high-dimensional multinormal distribution.

4) Measure the population benefits of each sample of 
the group.

5) Summarize the population benefits of each sam-
ple and measure their statistical characteristics and 
return-to-risk ratios.

Since the simulation can only generate a limited num-
ber of samples, selecting extremely tailed risk measures 
may cause the simulation results to be unstable. There-
fore, we repeat the evaluating steps mentioned above 
100 times independently and use the average value as the 
final result. Finally, we use empirical probability of cor-
rectly recommendations to estimate the accuracy of dif-
ferent CEAs.

Parameter settings and reference methods selection
To balance the adequacy of alternative interventions and 
the interpretability of results, we select a total of N = 5 
interventions and assume that the patient population 
consists of M = 100 individuals. The number of samplings 
of the outcome results of any patient subgroup is chosen 
to be 10,000, and the number of repeated experiments 
for the return-to-risk evaluation of population benefits is 
chosen to be 100 times.

The assumed distribution parameters within interven-
tion subgroups are shown in Table 1:

In addition, the correlation coefficients between differ-
ent individual outcomes among different groups are set 
to ∀i �= j, ρ

ij
C = 0.005, ρ

ij
Q = 0.002 , and the monetary 

constant, � , is set to � = 2000 $/QALY unless specifically 
mentioned.

Besides the method proposed in this paper, we select 
four different stochastic CEA methods as reference 
methods to participate in the evaluation together. The 
first is the classical ICER method, where the criterion 
measure is

The second is the Sortino ratio method (see Elbasha 
[8]) based on NMB, which compares the Sortino ratios (a 
kind of return-to-risk ratio using the expected benefit 
dividend by the downside variance) of different interven-
tions to determine their priority. The third and fourth 
methods are the probabilistic methods based on CEAC, 
which determine the superiority of the interventions by 
judging whether the α percentile of the ICER distribu-
tion, Qα(

Costj−Costi

QALYj−QALYi ) , satisfies the requirement of the 
willing-to-pay level ( � ). The third method is relatively 
aggressive, using α = 5%, while the fourth method is rela-
tively conservative, using α = 95%. Comparisons are made 
between the method proposed in this paper and these 
four reference methods.

(23)ICERi,j(M) =
E[Costj] − E[Costi]

E[QALYj] − E[QALYi]
.

Table 1 Assumptions of distribution parameters within intervention subgroups

ID (i) µ
i
Q

µ
i
C

σ
i
Q

σ
i
C

ρ
ii
Q

ρ
ii
C

ρ
ii
QC

1 7.5 6000 0.1 100 0.03 0.04 0.02

2 9 8000 0.05 200 0.04 0.04 0.02

3 10 10,000 0.1 300 0.03 0.03 0.02

4 12 12,000 0.15 400 0.03 0.03 0.02

5 14 15,000 0.2 200 0.03 0.03 0.02
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Simulation results
The simulation results are mainly presented in three 
parts. The first part shows the superiority of mixed inter-
vention compared to unique intervention from the per-
spective of population benefits. The second part displays 
the relationship between changes in the risk-adjusted 
ICER and the intervention structures, which demon-
strates the marginal optimality under different inter-
vention structures. The third part shows the preference 
decisions of different interventions by different stochas-
tic CEA methods under specific intervention structures, 
which demonstrates the validity of the decision by the 
tool of this paper.

Population benefits with mixed intervention
In this subsection, we evaluate the population benefits 
under different intervention structures through simula-
tion, and the incremental population benefits introduced 
by intervention mixing. It is verified that mixed interven-
tions can lead to better return-to-risk ratios. Specifically, 
intervention 4 and intervention 5 are chosen as the con-
trolled subgroups of this part, while the first three inter-
ventions have proportions of 0 in the structure, i.e., M1, 
M2, M3 = 0 to avoid extra interference. Then, the level of 
M4/M gradually varies from 0 to 1, and the correspond-
ing return-to-risk ratios of the population benefits are 
calculated. The results are shown in Fig. 2.

From Fig.  2, it can be seen that as the proportion of 
intervention 4 gradually increases from 0 to 1, the return-
of-risk ratios of population benefits shows a concave 
pattern, which firstly increasing and then decreasing. 

The target function reaches its optimum at around 
M4/M = 0.4. The optimum level, 0.0227, is significantly 
higher than the return-of-risk ratio of 0.0173 at M4/M = 0 
and 0.0127 at M4/M = 1. This suggests that if considering 
the medical decisions with intervention 4 and interven-
tion 5, using a 4:6 structure to mix both interventions 
is more efficient in a population view than using either 
intervention alone. This validates that it can be superior 
to mix interventions for population benefits.

Risk‑adjusted expected cost and risk‑adjusted ICER
Following the previous subsection, we calculate risk-
adjusted expected cost of both interventions and the 
risk-adjusted ICER for switching from intervention 4 to 
intervention 5 marginally as we gradually adjust the pro-
portion of M4/M in the [0, 1] range. Through the simu-
lation results, it is shown that the risk-adjusted ICER 
changes can lead the intervention structure to achieve 
the optimum. The simulation results are shown in Fig. 3.

In Fig.  3, the red curve represents the risk-adjusted 
expected cost of intervention 4, and the blue curve rep-
resents that of intervention 5. It can be seen that as the 
proportion of intervention 4 increases, the risk-adjusted 
expected costs’ difference between intervention 5 and 
intervention 4 changes from extremely positive to 
extremely negative. This is caused by changes in the 
diversification structure. Specifically, when the propor-
tion of intervention 4 is small, there are many cases using 
intervention 5 in the population. At this time, increasing 
one unit of intervention 5 cases is equivalent to adding 
a highly positive correlated risk to the total risk pool, 

Fig. 2 Effects on the population benefits of different intervention structures
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resulting in a relatively high level of risk allocated to the 
newly added one. This makes the risk-adjusted expected 
cost of the new unit of intervention 5 high at this situ-
ation. In contrast, the risk-adjusted expected cost of 
intervention 4 is relatively low because it is relatively 
independent with the risk pool. This pattern validates 
that the risk-adjusted expected cost does take the mar-
ginal impact of intervention restructuring on the risk 
pool into account in the risk adjustment.

In addition, the black curve in Fig.  3 represents the 
evaluation results of the risk-adjusted ICER from inter-
vention 4 to 5. It can be seen that this curve intersects 
with the � = 2000 threshold at around M4/M = 0.4, the 
optimal structure point. To the left of the intersection 
point, the risk-adjusted ICER is higher than the mon-
etized constant, indicating that switching one unit of 
patients from intervention 4 to intervention 5 is not 
cost-effective and has a negative impact on the popula-
tion benefits. Therefore, the proportion of intervention 5 
needs to be reduced. On the contrary, to the right of the 
intersection point, the opposite is true. It is worth not-
ing that the intersection of the black curve in Fig. 3 with 
� = 2000 coincides perfectly with the position where the 
return-of-risk ratio of population benefits gets its opti-
mum in Fig. 2. This also confirms that the risk-adjusted 
ICER can induce changes in the intervention structure to 
achieve the optimum.

Comparison of methods
In this subsection, we selected a specific interven-
tion structure (equal-weighted) as the starting point to 
examine the decisions of different stochastic CEAs for 

adjusting interventions and quantified the correspond-
ing impact on the distribution of the population benefits. 
These results are shown in Fig. 4.

“Traditional ICER” represents the results of the tradi-
tional ICER tool, “Risk-adjusted ICER” represents our 
proposed method, “Sortino Ratio” represents the deci-
sion made using the Sortino ratio tool, “CEAC at 5%” 
represents the aggressive CEAC method, and “CEAC at 
95%” represents the conservative CEAC method.

In Fig.  4, each sub-plot presents the information in a 
5 × 5 matrix, where the grid in the ith row and jth col-
umn of any sub-plot represents the decision made by the 
corresponding stochastic CEA tools or its correctness, 
for changing an unit of patients from intervention i to 
intervention j. The decisions are shown in the sub-plots 
of the first row, where + 1 represents a decision to accept 
the change, − 1 represents a decision to accept an inverse 
change, and 0 represents no modification. The correct-
ness of the decision results is displayed in the sub-plots 
of the second row, where the number in each grid repre-
sents the percentage of scenarios where population ben-
efits are improved after the changes are taken based on 
the corresponding decision, within the 100 times of sim-
ulated scenarios. Additionally, the cells on the diagonal of 
each sub-plot do not contain any information.

From this comparison, it can be seen that the deci-
sions of the traditional ICER and CEAC methods differ 
from our proposed method and the Sortino method to 
some extent. Specifically, the traditional ICER does not 
consider the stochasticity and only requires the ICER to 
be below the monetized constant in an expected view 
for each accepted intervention change. And, the CEAC 

Fig. 3 Risk-adjusted expected cost and risk-adjusted ICER for different structures
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method, similar to the traditional ICER, does not use the 
information contained in the current intervention struc-
ture. The Sortino Ratio method obtained similar deci-
sions with respect to our proposed method, which can 
be attributed to the similarity in risk-adjusted measures 
between the two methods. However, the Sortino Ratio 
method still does not consider the current intervention 
structure, so there are still differences. These differences 
are not very significant due to the low level of correlation 
assumed in the simulation.

Also, it can be found that only our proposed method 
can almost perfectly ensure that the decisions to achieve 
an accuracy over 50%, which also reaches the highest 
level among all methods in expectation (The absolute 
value of the accuracy is related to the number of simu-
lated samples, so the relative level of the accuracy of each 
method is mainly compared.). In addition, except for the 
judgement1 between intervention 2 and 1, our proposed 
method achieved the highest accuracy rate among all 
methods for any pair of comparisons. This also validates 
the effectiveness of our proposed method.

An empirical example
In this subsection, we discuss an empirical example 
using the information extracted from recent research on 
comparing direct oral anticoagulants compared to low-
molecular-weight-heparins for treatment of cancer asso-
ciated venous thromboembolism, see Muñoz et al. [15]. It 
is worth noting that we just use some of the parameters 
from the research, but do not try to answer or challenge 
any problem or conclusion about this health technology 

assessing problem in real world. For short, we just bor-
row some parameters from this work to show that the 
population can benefit from mixed interventions, and we 
can find the optimal mix structure with our tools.

There are four kinds of interventions introduced in this 
article, the low molecular weight heparin (LMWH), the 
Apixaban, the Rivaroxaban and the Edoxaban. All these 
four interventions could be used for treatment of cancer 
associated venous thromboembolism. The paper shows 
the expectation of costs and QALYs (12  months) of all 
these four interventions, and we can roughly extract the 
coefficient of variation (CV, standard error divided by 
mean) form the confidence intervals and simulation fig-
ures. With some more assumptions, like � = 30000 , the 
parameters in our example are shown in Table 2.

To show the benefit from mixed interventions and the 
optimality of our proposed structure, we compare six sit-
uations. Four of them are using these four interventions 
alone, the fifth is an equal weighting structure and the 
final is the structure generated from our tool. The mean, 
variance and the return-to-risk ratio are calculated for all 
these six situations, and the results are shown in Table 3.

We can find in Table 3 that none of the four interven-
tions alone could make the return-to-risk ratio of popula-
tion benefit more than 0.100, but just a simple mix with 
equal weight can make it 0.112, which clearly shows the 
benefit from mixing interventions. Moreover, simple mix 
does benefit, but only the optimal structure generated by 
our tool reaches the highest ratio of 0.148. This is around 
0.7 times higher than solely use the intervention sug-
gested by classical CEA tools.

The optimal structure is {0.00%, 32.62%, 33.22%, 
34.16%}, which gives zero weight on LMWH and nearly 
equal weights on Apixaban, Rivaroxaban and Edoxaban. 

Fig. 4 Decisions and correctness of various stochastic CEA methods

1 The bias in the comparison results of this pair of interventions is a random 
result with a small probability due to the limited number of samples.
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This consistent with the judgment of the original article 
that the intervention of LMWH is dominated. This also 
shows the reliably of our tool.

Discussion
The tool proposed in this paper may suggest the popula-
tion to use mixed interventions instead of a unique one. 
The population benefit can result in a controlled risk level 
due to diversification effect. To suggest mixed interven-
tions in the real world has many considerable benefits, 
and still has kinds of challenges.

Besides risk consideration, mixed interventions could 
give the population a chance to accept an innovated 
intervention gradually, to avoid potential long-tailed 
losses, such as some long-term adverse effects that have 
not yet been discovered by clinical trials (such as the 
example of Thalidomide). Moreover, unique intervention 
decisions could result in high concentration risk and the 
potential monopolies. An intervention provider who won 
the winner-takes-all game can make a much higher price 
without competitors. Third, there is also heterogeneity 
in patients’ willingness to pay and mixed interventions 
leaves room for patients to make their own decisions. 
At last, mixed interventions tend to give chance to 

innovated interventions, even just a little part of the mar-
ket, to encourage technological advances.

However, it is necessary to face up to the challenges of 
mixed interventions. First, mixed interventions may con-
fuse clinical decision makers in making a finally decision 
for individuals. This challenge could be settled by give 
soft suggestions with room for choice. Clinical decision 
makers could select the interventions accepted in the 
mixed interventions with their own expertise. In-depth 
differential diagnosis and intervention may yield better 
outcomes. Second, mixed interventions may force the 
healthcare settings to prepare the ability to provide all 
kinds of interventions in the mix, which will cause a lot 
of waste in resources. This can be solved by an integrated 
management. We can suggest a big hospital A to provide 
robotic surgeries and allow a primary care setting B to 
provide minimally invasive ones. Interventions could be 
allocated according to their own preference and special-
ties. The mix should be kept in an integrated view. Third, 
it can be difficult to keep the structure of mixed inter-
ventions at the optimal point. That is also a reason that 
we proposed a marginal adjustment tool. The real world 
is dynamic, and we should manage it dynamically. Even 
we can’t always keep an optimal structure, we can make 
slight adjustment according to the marginal adjustment 
criterion proposed in this paper to get a better popula-
tion benefit.

Also, some statistical tools might be introduced in real 
world estimation of the parameters used in our method. 
For the correlation between costs and outcomes for 
individuals, it is already contained in classical HTA data 
records, but just neglected in classical assessment pro-
cesses. For correlation among different patients, retro-
spective statistical analysis in the real world can help to 
get the estimations. Moreover, sensitivity tests can exam-
ine the reliably of results. More econometric tools can 
help in estimating systematic uncertainties.

Table 2 Parameters for empirical example

Cost Var_of_Cost QALY Var_of_QALY ρQC

LMWH 21,512.00 41,648,952.96 0.53 28.09 0.1

Apixaban 1,944.00 340,122.24 0.55 30.25 0.1

Rivaroxaban 2,122.00 405,259.56 0.53 28.09 0.1

Edoxaban 1,968.00 348,572.16 0.52 27.04 0.1

ρC ρQ

LMWH Apixaban Rivaroxaban Edoxaban LMWH Apixaban Rivaroxaban Edoxaban

LMWH 1 0.005 0.005 0.005 1 0.005 0.005 0.005

Apixaban 0.005 1 0.02 0.02 0.005 1 0.02 0.02

Rivaroxaban 0.005 0.02 1 0.02 0.005 0.02 1 0.02

Edoxaban 0.005 0.02 0.02 1 0.005 0.02 0.02 1

Table 3 Results for empirical example

Population 
benefit 
(mean)

Population 
benefit 
(variance)

Return‑to‑risk

LMWH only − 5612.00 2.55E+10 − 0.035

Apixaban only 14,556.00 2.72E+10 0.088

Rivaroxaban only 13,778.00 2.53E+10 0.087

Edoxaban only 13,632.00 2.44E+10 0.087

Equal weight mix 9088.50 6.64E+09 0.112

Optimal structure 13,981.95 8.87E+09 0.148
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At last, it is worth to mention that the tool we proposed 
has a good property of generalization. Although the cri-
terion is named as risk-adjusted expected costs, we con-
sider all kinds of risks and uncertainties for interventions 
including but not limited to costs and outcomes. Moreo-
ver, this tool support for all types of risk measures, which 
means that the decision could be made in any level of risk 
aversion. Also, the criterion, risk-adjusted ICER, retains 
the same expression form as the classical ICER, keeping 
high comparability with previous conclusions and low 
tool substitution costs. The risk-adjusted expected cost 
used in the numerator also has clear economic implica-
tions. The risk adjustment item added to the expected 
cost is obtained by multiplying the cost rate of risk by 
the allocated risk level, which is consistent with the eco-
nomic logic of risk premium. And finally, it is not sensi-
tive to the measure of life quality and currency.

Conclusion
This paper proposes a stochastic CEA tool that considers 
uncertainty from the perspective of population benefits. 
The tool can evaluate the cost-effectiveness of different 
interventions under the current intervention structure, 
considering all kinds of risks in costs and outcomes. In 
theory, we present a necessary conditions for achieving 
the optimal intervention structure that maximizes the 
return-to-risk ratio of population benefits. Furthermore, 
we introduce the risk-adjusted ICER as a criterion for 
comparing any two interventions under any structure of 
mixed interventions. Theoretical analysis confirms that 
the criterion is optimizing population benefits. Results 
from numerical simulations and empirical examples also 
support these findings.

The population benefit gives a new perspective on 
measuring the cost-efficiency of a population but not 
individuals. And the tool we proposed helps to find 
the optimal mixed structure of interventions to maxi-
mize the return-to-risk ratio of the population benefit. 
The risk-adjusted ICER as the criterion can effectively 
induce the optimization and has clear economic impli-
cations. The conclusions obtained by the method pro-
posed in this paper in the CEA analysis with uncertainty 
should be provided as decision reference to medical 
decision-makers.
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