
Geenen et al. Cost Eff Resour Alloc           (2020) 18:54  
https://doi.org/10.1186/s12962-020-00251-7

METHODOLOGY

Increasing the information provided 
by probabilistic sensitivity analysis: The relative 
density plot
Joost W. Geenen1†, Rick A. Vreman1,2†  , Cornelis Boersma3,4, Olaf H. Klungel1*, Anke M. Hövels1 
and Renske M. T. Ten Ham1

Abstract 

Background:  Results of probabilistic sensitivity analyses (PSA) are frequently visualized as a scatterplot, which is lim-
ited through overdrawing and a lack of insight in relative density. To overcome these limitations, we have developed 
the Relative Density plot (PSA-ReD).

Methods:  The PSA-ReD combines a density plot and a contour plot to visualize and quantify PSA results. Relative 
density, depicted using a color gradient, is transformed to a cumulative probability. Contours are then plotted over 
regions with a specific cumulative probability. We use two real-world case studies to demonstrate the value of the 
PSA-ReD plot.

Results:  The PSA-ReD method demonstrates proof-of-concept and feasibility. In the real-world case-studies, PSA-ReD 
provided additional visual information that could not be understood from the traditional scatterplot. High density 
areas were identified by color-coding and the contour plot allowed for quantification of PSA iterations within areas of 
the cost-effectiveness plane, diminishing overdrawing and putting infrequent iterations in perspective. Critically, the 
PSA-ReD plot informs modellers about non-linearities within their model.

Conclusions:  The PSA-ReD plot is easy to implement, presents more of the information enclosed in PSA data, and 
prevents inappropriate interpretation of PSA results. It gives modelers additional insight in model functioning and the 
distribution of uncertainty around the cost-effectiveness estimate.

Keywords:  Probabilistic sensitivity analysis, Relative density, Health economics, Modelling, Health technology 
assessment, Sensitivity analysis, Information, Knowledge, Uncertainty, Health
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Background
Health economic models have become an integral part 
of healthcare decision making [1–4]. These models 
rely on input parameters associated with uncertainty 
which must be taken into account when calculating 

and presenting model results [5]. Deterministic and 
probabilistic sensitivity analyses (DSA and PSA) are 
systematic approaches that quantify the impact of 
uncertainties related to model inputs on the outcomes 
of the model [6]. In a PSA all input parameters are 
simultaneously varied along predefined ranges accord-
ing to their specific distribution. The PSA has been the 
most prominent method to quantify the impact of com-
bined uncertainty of all model input parameters [7]. 
Besides providing insight on uncertainty, a PSA also 
provides insights in the functionality of the model as it 
graphically conveys the relationship between the model 
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structure, the input parameters and the outcomes. The 
output of a PSA is typically presented as a scatter plot 
in the cost-effectiveness plane (CE-plane) [8].

The traditional scatter plot is useful to quickly visualize 
the distribution of PSA results as well as the correlation 
between the cost and the effect measure of interest [9]. A 
critical aspect of the scatter plot is its ability to illustrate 
the distribution of PSA samples over the quadrants of the 
cost-effectiveness plane (i.e., increased Quality Adjusted 
Life Years [QALY] and increased costs or decreased 
QALYs and increased costs). The scatter plot itself is not 
the sole measure to quantify and interpret parameter 
uncertainty as, for example, the likelihood of cost-effec-
tiveness is typically illustrated with a cost-effectiveness 
acceptability curve (CEAC). The PSA scatterplot is an 
intuitive, useful and usually mandatory figure in commu-
nication towards stakeholders, who might be less famil-
iar with uncertainty analyses. To a modeler on the other 
hand, a scatterplot is a useful tool to quickly grasp the 
influence of changes to model structure and parameter 
distributions. Despite these advantages, the traditional 
scatter plot has two major limitations.

The first limitation is that in the traditional scatter plot, 
individual point estimates are overlapping in high den-
sity areas. This so-called overdrawing makes it hard to 
assess the relative density of point estimates in populous 
areas of the plot (Gleicher [10]). Second, due to difficulty 
in estimating this relative density, infrequent scenarios 
appear very prominent in the traditional figure. This may 
cause overestimation of the occurrence of these scenar-
ios. These two limitations thus yield incorrect or incom-
plete insight in the relationship between the underlying 
model, its parameters and the outcomes.

To overcome these two limitations a novel presentation 
of the PSA scatter plot is desired. Increased computa-
tional power combined with increased popularity of open 
source software, such as R, provide the tools to improve 
the traditional PSA presentation (R Core team [11]). Two 
R-packages are frequently used to display PSA scatter 
plot results. The heemod package uses colored hexagons 
to display relative density which gives some information 
on overdrawing [12]. The Bayesian Cost-Effectiveness 
Analysis (BCEA) package by Baio et al. provides the tools 
to draw a contour plot using ellipses in discrete intervals. 
[13]. Both packages require the user to build a cost-effec-
tiveness model using package specific syntax to be able to 
use and apply the package features. This requires exten-
sive R-skills which can put-off users less familiar with the 
programming language. Additionally, the features avail-
able within these packages provide either a plot showing 
relative density (heemod) or a contour plot (BCEA). Nei-
ther provides a combination of both these plot elements.

We therefore developed a novel open source graphi-
cal presentation of PSA results, incorporating relative 
density and probability contours, overcoming both over-
drawing and outlier overestimation. The method is inde-
pendent from modelling software and relies only on an 
import of PSA results in.csv format. We call this new PSA 
output presentation the Relative Density plot (PSA-ReD).

The aim of this paper is to illustrate the concept and 
functionalities of the PSA-ReD plot based on its applica-
tion to two real-world case studies. We also provide the 
R-code designed for direct application to any user’s own 
research outputs together with a user manual on GitHub 
(details provided after blinded review, reference 14).

Methodology
Relation to traditional cost‑effectiveness plane
A traditional PSA output is a two-dimensional black and 
white scatter plot presented on a CE-plane (Fig. 1a). The 
PSA-ReD plot (Fig. 1b) combines a multi-colored density 
plot (Additional file 1: Fig. S1a) and a contour plot (Addi-
tional file 1: Fig. S1b). The combination of these two plots 
allows the reader to identify and distinguish high density 
areas using a color scale, as well as a quantification of the 
point estimate density within the CE-plane, thus visualiz-
ing the information that remains hidden in the traditional 
scatter plot. This increases the information that can be 
understood from the scatter plot and improves under-
standing of the parameter uncertainty which a PSA is 
aimed to address.

To explain how the PSA-ReD plot works, we pro-
vide a simulated example in Fig. 1b. It assumes a model 
with only two standard normally distributed parameters 
(mean = 0 and standard deviation = 1) that define the 
incremental costs and incremental QALYs.

In Fig. 1a, the base case would be at zero incremen-
tal costs and zero incremental QALYs. Though we 
can see that the borders of the area are less densely 
populated, it is unclear how the density of iterations 
is spread over the populated area. If instead we look 
at the PSA-ReD plot in Fig.  1b, it becomes clear that 
the density is evenly spread around the base case, as 
would be expected for this normally distributed data. 
Additionally, the contours give insight into the spread 
of the iterations. In this case, the area containing 95% 
of the iterations will approximate that of a 95% confi-
dence interval because we used normal distributions. 
A bivariate normal distribution is distributed accord-
ing to the χ2-distribution with two degrees of freedom 
[14]. Taking the square root of the critical value for the 
95% confidence interval (5.99), results in the area bor-
ders of the confidence interval (2.45). This is clearly 
shown by the contours in the PSA-ReD plot. In general, 
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the probability that the values for two variables within 
a joint distribution together fall in any area of their two 
dimensions is given by the volume (or cumulative prob-
ability) under the density function above that area. This 
is exactly what the PSA-ReD method calculates, as is 
explained in the next section.

The density plot
The density plot (Additional file  1: Fig. S1a) could be 
interpreted as a two-dimensional histogram. Like a 
traditional one-dimensional histogram, the two axes 
are divided in sections. These sections on both axes 
divide the two-dimensional space in distinct rectangu-
lar regions. Then, as in a one-dimensional histogram, 
the number of data points per region is counted and 

Fig. 1  a Traditional scatterplot displaying PSA results. b New graphical presentation of PSA using the Relative Density plot (PSA-ReD) using a 
bivariate normal distribution with mean = 0.0, sd = 1.0, 10,000 iterations and 1000 bins. PSA Probabilistic Sensitivity Analysis
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transformed to present the relative frequency using a 
color scale. Low density is presented by a green to blue 
scale and high density is presented by a yellow to red 
scale.

When using a histogram, the choice of the anchor 
point of the plot area (i.e., the range and starting points 
of the axes) has influence on the graphical outcome [15]. 
This effect would be most pronounced in a one-dimen-
sional histogram with relatively few datapoints: Shifting 
the x-axis would change the histogram as, by chance, the 
number of datapoints falling within each bin would dif-
fer with each x-axis shift. Crucially, the underlying data 
remains the same and this bias would also be present 
in two-dimensional histograms [15]. To overcome this, 
bivariate kernel density estimation (kde) is used as it 
provides a more accurate representation of the probabil-
ity density [15]. Instead of counting the number of data 
points per rectangular section, each data point is sur-
rounded by a kernel which are summed to yield the ker-
nel density estimate. Each data point is thereby smoothed 
over a small surrounding area (data kernel) instead of 
being a single data point [15]. The size of this area is 
determined by the data as explained in the ‘technical 
aspects’ paragraph. Consequently, the way the resulting 
plot looks does not depend anymore on the size of any 
bins over the x-axis or y-axis.

The contour plot
The PSA-ReD plot combines the density plot with a con-
tour plot (Additional file 1: Fig. S1b). The contours indi-
cate the boundaries of regions with a specific cumulative 
probability. This cumulative probability is calculated by 
summing the area density estimates (retrieved from the 
kernel estimation method). For this summing of density 
estimates to cumulative probabilty, densities are sorted 
from high density to low density with the summing start-
ing from the highest density. These cumulative probabili-
ties are then mapped to a range of 0 to 1. In this way, the 
total density in the plot area sums to one, reflecting the 
cumulative probability. A contour line is then drawn join-
ing areas with specific pre-specified values of cumulative 
probability. For each individual plot area in the PSA-ReD, 
two values are now available: the density per area and the 
cumulative probability that is reached per area. A con-
tour line is then drawn joining areas with specific pre-
specified values of cumulative probability. These values 
can be chosen by the user (e.g. 0.1, 0.5, 0.95).

When there are multiple, disjointed high (or low) den-
sity-areas, it is possible that separate contours with equal 
cumulative probability values are drawn over these sep-
arate areas. For example, when there are separate high-
density areas that together amount to 50% of the data 

points, seperate contour-lines with the value of 0.5 would 
be drawn around both high density values.

Hardware and software
The script for the PSA-ReD plot was developed and 
tested using R version 3.5.1 and Rstudio version 1.1.453 
(R Core team [11, 16]). For our analyses, we used a stand-
ard consumer grade personal computer (Dell OptiPlex 
9020). In the technical appendix (Additional file  2), we 
provide detailed information on the hardware and soft-
ware used.

The R script that we used is available in a GitHub repos-
itory [17]. We adhered to Google’s R Style guide and pro-
vide step-by-step guidance using comments embedded in 
the script [18]. The R script is licensed under the GNU 
General Public License v3.0 [19]. In short, this means 
that users are free to run, study, share and modify the 
software. The license dictates, among other things, that 
the software (or derivative work) must be open source 
and that derivative work must be published using the 
same license [19]. This guarantees that our project can 
be used and optimized by anyone whilst ensuring that it 
remains open to all.

Technical aspects of plot generation in R
In R, we use the kde2d function from the Modern 
Applied Statistics with S (MASS) package to perform 
the aforementioned kernel density estimation [20]. In 
essence, the outcome of kde is a density value per area 
of a prespecified size, comparable to the number of data 
points within each bin in histograms. Detailed infor-
mation is provided in the work by Silverman and in the 
documentation of the MASS package [20, 21]. As these 
density values are very small and hard to interpret, we 
normalize these values by taking the reciprocal of the 
maximum density value to yield values ranging from 
0.0 to 1.0. With these, we generate an easy to interpret 
plot with a scale from 1.0 (highest density) to 0.0 (lowest 
density).

The kde2d function has, besides the x and y values, two 
arguments that influence the kde. These are n (the num-
ber of bins in each dimension) and h (the bandwidth that 
determines the level of smoothing). The number of bins 
defines the number of sections on each axis. The total 
number of areas within the resulting plots is therefore 
horizontal bins * vertical bins (e.g. 100*100 = 10,000). 
An easy analogy of these areas would be to regard them 
as pixels, the bins then determine the resolution in both 
directions. This pixel-analogy only reflects to the num-
ber of underlying bins. As we outline in the Additional 
file 2 (Technical Appendix) regarding the saving of plots, 
the actual resolution of the figures can be specified and is 
irrespective of the number of bins used. As the number 
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of bins can be interpreted as the resolution of the figure, 
a larger number of bins produces a more precise figure. 
However, increasing the number of bins also increases 
computation time which means a balance must be struck.

In Additional file 1: Fig. S2, we present the influence of 
different bin sizes. Using 50-500 bins (Additional file  1: 
Fig. S2a, b), yields a density gradient that is not smooth 
and may appear like the image is pixelated. With 1000 
bins (Additional file  1: Fig.  S2c), the image is smooth, 
no pixilation can be identified and all the computation 
is performed within 1 minute on the aforementioned 
consumer grade computer. With more bins (2000, Addi-
tional file 1: Fig. S2d), the image does not get smoother 
but it does lead to increased RAM usage and computa-
tion time. Another consequence of a lower number of 
bins (as in Additional file  1: Fig.  S2a) is that due to the 
lack of smoothing, the contours are placed different from 
when more bins are used. Essentially, with fewer bins, the 
contours are very rough. We therefore recommend using 
1000 bins and have used this number of bins in all figures 
throughout the manuscript, unless otherwise stated.

The h argument of the kde2d function determines the 
bandwidth of the kernel areas. It can be interpreted as the 
size of the kernels that is applied when converting each 
data point to a data kernel. We have chosen to leave this 
at the default setting where the bandwidth is automati-
cally selected based on the data by the well-established 
MASS package (specifically, the bandwidth.nrd function) 
[20]. This guarantees generalizability of results.

Number of PSA iterations
As in any PSA, it is preferred to run as many iterations as 
necessary to reach model convergence [6]. We explored 
the influence of the number of iterations used by varying 
this between 1000 and 100,000 iterations, as presented in 
Additional file 1: Fig. S3. As RAM usage and computation 
time increases when more iterations are used, we recom-
mend using a maximum of 10,000 iterations. Running the 
script with 10,000 iterations takes a maximum of 1 min. 
In all figures throughout this manuscript, we have used 
10,000 iterations unless otherwise stated.

User modifications
Other parameters that can be altered by the user are 
contour levels, axis-, legend- and plot titles, font sizes 
and font types. In the supplied script, it is explained how 
and where this can be done. Apart from these cosmetic 
changes, we provide means to zoom on a particular area 
of the plot and generate a new plot from that specific 
area. Additional file 1: Fig. S4 displays this zooming capa-
bility. We also provide a feature that allows users to plot 
willingness-to-pay (WTP) thresholds in the PSA-ReD 
plot, as well as plotting the average incremental costs 

and incremental effects for the PSA and the results of the 
deterministic base case scenario. The technical appendix 
(Additional file 2) provides in-depth explanations on the 
use of the various features described above.

Case study demonstration
To demonstrate the novel graphical presentation, the 
concept was applied to two exemplary case studies. 
These real-world case studies were selected as a conveni-
ence sample as we needed access to the raw PSA results. 
To increase transparency, we opted for published case 
studies. The two selected cases each show a different 
pattern within the PSA results. Both patterns are com-
monly seen in economic evaluations. The first real-world 
case study assesses the influence of three characteristics 
(cost, specificity and sensitivity) on cost-effectiveness of 
a hypothetical pharmacogenomic test for prevention of 
angiotensin-converting enzyme inhibitor induced angi-
oedema (denoted as ‘eHTA study’) [22]. The second real-
world case study used a three-state partitioned survival 
model to investigate cost-effectiveness of periodic thera-
peutic drug monitoring of endoxifen levels in breast can-
cer patients (denoted as ‘TDM study’) [23].

Results
eHTA case study
The results of the PSA of the eHTA study are presented 
in Fig. 2. This figure shows the PSA results both in tradi-
tional presentation (2A) as well as via the PSA-ReD plot 
(2B). The figures are both based on 5000 PSA iterations, 
as this reflects the number of iterations in the published 
paper [22]. The classic CE-plane implies more spread 
due to a small number of iterations that generate rela-
tively high incremental QALYs. However, the PSA-ReD 
plot shows these are extremely infrequent and fall out-
side the contour area that includes 95% of the iterations. 
Additionally, 10% of all iterations appear within an area 
of approximately 0.05 incremental QALYs (0.0 –0.05) and 
1000 incremental euros (4000–5000). Particularly inter-
esting is that the base case falls well outside this most 
dense area. This is contrary to what would be expected 
in a PSA as generally, the most likely outcome for the 
incremental cost-effectiveness ratio (ICER) based on the 
individual distributions of parameters is close to the base 
case. Thus, one would expect the highest density area to 
be surrounding the base case.

However, when one of the model parameter distribu-
tions is skewed (i.e. a beta or gamma distribution), the 
resulting average of all PSA samples will, by definition, 
not lie on the point of highest density as the average will 
lean towards the tail of the specific distribution. In cer-
tain parameterizations of the beta and gamma distribu-
tions (e.g. when α < 1 and β > α), the base case value will 
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not be the value with the highest probability density of 
that specific distribution. Instead, the value of 0 will have 
the highest probability density. In the eventual PSA-
ReD plot, this effect attenuates the area of highest den-
sity away from the base case towards 0 as is especially 
apparent in this case study. This information cannot be 
interpreted from the traditional CE-plane. Therefore the 

PSA-ReD plot can provide modelers with information 
regarding model behavior.

A.csv datafile with the incremental QALYs (x-values) 
and incremental costs (y-values) of the eHTA PSA results 
is provided in the GitHub repository to allow the reader 
to recreate the PSA-ReD.

Fig. 2  Probabilistic sensitivity analysis (PSA) output of eHTA-study. a Traditional presentation. b New graphical presentation of PSA using the 
Relative Density plot (PSA-ReD)
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TDM case study
Figure  3 shows the PSA results from the TDM case 
study both in traditional presentation (3A) as well as 
via the PSA-ReD plot (3B). Both figures are based on 
10,000 PSA iterations. Density in the classic CE-plane 
is not interpretable but suggests a relatively high den-
sity around the base case and in the upper left corner of 
the plane. Additionally, there seems to be accumulation 

of iterations along the Y-axis. The PSA-ReD plot more 
precisely clarifies the high density that is found within 
the small area near the origin. Additionally, the rela-
tively high density suggested by the CE-plane around 
the Y-axis is put into perspective by the PSA-ReD plot, 
clarifying that these scenarios are relatively infrequent. 
The PSA-ReD plot nevertheless provides the user 
with the information that some iterations accumulate 
around the x-axis through the contours that end up 

Fig. 3  Probabilistic sensitivity analysis (PSA) output of TDM-study. a Traditional presentation. b New graphical presentation of PSA using the 
Relative Density plot (PSA-ReD)
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going into the y-axis rather than all curving toward the 
high highest density area.

Discussion
Through the normal distribution example in the meth-
ods section, we demonstrated the application and inter-
pretation of the relative density estimation function and 
the applied normalization of the values on which the 
PSA-ReD plot is based. In two real-world case studies, 
we demonstrated how the PSA-ReD plot provides more 
insight into the relative density and cumulative area 
probabilities. Thus, the PSA-ReD plot provides visual 
information that is not provided by the traditional PSA 
scatter plot within the CE-plane nor by solely a density 
plot or a contour plot. Another benefit of the PSA-ReD 
plot is that it provides very clear insight that uncertainty 
distributions may be non-linear. In both case studies, the 
highest density areas were not centered around the base 
case or the PSA average, in fact the base case and PSA 
average values lied outside the 0.4 cumulative probability 
contour around the most dense area for both case stud-
ies. This information is valuable to modellers as it pro-
vides them with insight about model functioning. If the 
extent of the resulting skew cannot be readily explained, 
possibly the model does not function as intended.

The traditional scatterplot is often accompanied by a 
cost-effectiveness acceptability curve and/or frontier. A 
cost-effectiveness acceptability curve will provide deci-
sion-makers with information regarding the likelihood of 
an intervention being cost-effective given certain WTP-
thresholds. PSA-ReD, as traditional scatterplots, does not 
provide the decision-maker with this information, as the 
contours show cumulative probability around the base 
case rather than probability in relation to a threshold. 
PSA-ReD provides modellers with additional insight into 
the distribution of uncertainty in the PSA as opposed to 
a traditional scatterplot, but does not provide the infor-
mation a CEAC provides. Therefore, PSA-ReD should 
be complemented with cost-effectiveness acceptabil-
ity curves as would also be the case for the traditional 
scatterplot.

The benefits of the PSA-ReD plot over the traditional 
scatter plot are evident. The accumulation of PSA results 
within certain areas of the cost-effectiveness plane can 
often not be interpreted by the traditional scatter plot. 
The PSA-ReD plot not only clearly visualizes the loca-
tion of these high-density areas, it also provides a quan-
tification of the proportion of PSA iterations within these 
areas. Additionally, inappropriate significance could 
be attributed to relatively infrequent PSA iterations in 
the traditional scatter plot. The PSA-ReD plot dimin-
ishes this effect. Another benefit of the PSA-ReD plot 
is that it more appropriately reflects the distribution of 

uncertainty in the model as this distribution is in essence 
continuous. The PSA approximates this distribution by 
providing many iterations, but the PSA-ReD plot trans-
forms these iterations into a continuous uncertainty dis-
tribution (through kernel density estimation), which is a 
more appropriate representation of model uncertainty.

Modellers should not be hampered by the current and 
clear graphical limitations of the scatterplot. The PSA-
ReD plot provides modelers with increased insight into 
the relation between all input parameter distributions 
and the subsequent distribution of model outcomes. 
This can serve as an additional validation to confirm the 
model works as intended. Besides additional validation, 
PSA-ReD can help the modeler identify nuances that 
might be overlooked or hidden in the traditional PSA, 
such as the extremely high density area presented in 
the TDM case-study. Our two case studies furthermore 
demonstrated some benefits of PSA-ReD for models 
that have skewed PSA distributions, but these benefits 
would likely be greater for highly non-linear models as is 
for example often seen within infectious disease model-
ling. In general, it is becoming increasingly important to 
critically review the distributions of uncertainty within 
cost-effectiveness models due to its increased relevance 
in light of drug approval processes that inevitably come 
with increased uncertainty, such as conditional approval 
[24, 25]. We believe that maximum insight in the com-
plex interplay between model structure, parameters and 
parameter distributions allows the modeler to make bet-
ter decisions.

Currently, R packages exist that provide the option for 
plotting density figures. However, the corresponding doc-
umentation is typically hard to decipher and interpret for 
inexperienced users, the packages lack abilities for user 
adjustments and the packages typically require the user 
to perform all model syntax according to the construct 
of these packages. The heemod package for example, is a 
package specifically designed for cost-effectiveness analy-
sis [12]. Though it does provide the option of generating 
a density plot, this does not generate contours nor does 
it provide user options such as the plotting of WTP-
thresholds. To display results in a density plot using the 
heemod package, users need to understand and use the 
heemod package syntax. Another example is the BCEA 
package which has a variety of graphical capabilities but 
also requires users to use the specific syntax [13]. An 
alternative previously described approach to illustrate 
areas with a specific cumulative probability is the ellipse, 
for example implemented as a 95% confidence ellipse 
by Pradelli et  al. and as an option in the software suite 
TreeAge [26, 27]. This approach has several weaknesses. 
First, it assumes the underlying distribution is ellipti-
cal. This would be correct for our normally distributed 
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example but is clearly not suitable for the two real-world 
case studies. Our non-parametric density estimation 
does not rely on this assumption. Second, there is no sin-
gle or clear method on how to generate the ellipse which 
potentially limits generalizability. Indeed, the example of 
Pradelli et al. does not describe the methodology used to 
generate their ellipse. Third, there is no readily available 
and generic implementation of the ellipse methodology 
in for example Excel or R, so this functionality could only 
be available if the health-economic model is built within 
a specific proprietary software package. Our approach to 
the PSA-ReD plot is specifically designed to combine a 
density plot with a contour plot in one figure and to be 
used with any model and any software, as long as the user 
is able to extract the PSA x- and y-values and save them 
as an.RData, Microsoft Excel or.csv file which thereaf-
ter can be imported into R using our script. This facili-
tates maximum applicability of the PSA-ReD plot code. 
It does not matter in which software program the model 
has been constructed or even what type of probabilistic 
analysis has been performed.

To facilitate the use of our method we provided a step-
by-step tutorial on GitHub to generate the PSA-ReD plot 
based on PSA results from any user’s own research (J. 
W. Geenen, 2018/2019). This tutorial is designed to also 
accommodate users with very basic R knowledge. Addi-
tionally, generating a variety of PSA-ReD plots is easier 
and quicker than generating multiple attractive plots in 
Excel.

For modelers who do not wish to use or explore R, it 
is possible to generate a 2D histogram with colors within 
Excel. This approximates the density part of the PSA-ReD 
plot but lacks the kernel density estimation and con-
tours. It also does not provide the option for adding WTP 
thresholds nor any of the user options to adjust the figure 
to make it more visually attractive. An Excel file includ-
ing the Visual Basic Application syntax can be requested 
from the authors. However, we highly recommend using 
R for PSA-ReD generation. The R script provides the 
option to construct only a contour or only a density plot.

The PSA-ReD script bases the size of the plot exactly 
on the minimum and maximum values of the PSA itera-
tions in the dataset. This means that four PSA points (or 
less if they define a corner) lie exactly on the borders of 
the PSA-ReD figure. As plots usually have some space 
around the minimum and maximum values, this may 
make the initial interpretation of the total range slightly 
harder, but we believe that this yields the best insight into 
the (distribution of ) high density areas as the plot size is 
kept as small as possible.

The provided R script provides a selection of user 
options to modify the generated plot. These options and 
settings are aimed at providing all the functionalities that 

users of the current scatter plots require. Though expe-
rienced R users may be able to further customize the 
script, novel users are encouraged to apply the options 
provided in this paper to ensure generalizability of the 
PSA-ReD plot generated by different users.

Conclusion
The proposed PSA-ReD plot facilitates intuitive visual 
interpretation of information included in PSA results 
that cannot be derived from the traditional scatter plot. 
Specifically, the PSA-ReD plot provides truly additional 
quantitative information on the relative density of PSA 
outcomes. Furthemore, it gives insight in the cumulative 
probability of PSA iterations within predefined areas of 
the cost-effectiveness plane. The PSA-ReD plot can thus, 
compared to the traditional scatter plot, provide a more 
detailed presentation of the highest-density areas, quan-
tify their cumulative probability, and is not prone to over-
emphasis of infrequent PSA iterations.

These improvements allow the modeler to gain a bet-
ter and an unbiased insight in the underlying dynamics of 
model structure, parameters and parameter distributions 
reflected in the uncertainty around the point estimate for 
the cost-effectiveness in a PSA-ReD plot. These insights 
can be leveraged for better model validation and develop-
ment. PSA-ReD should not be seen as a completely new 
technology but instead as the the next iteration in the 
development of PSA as a means to gain insights in model 
functionality and outcome uncertainty.
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