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Abstract 

Background INES (INteractive model for Extrapolation of Survival and cost) provides an open‑access tool powered 
by R that implements three‑state partitioned survival models (PSM). This article describes the properties of the tool, 
and the situations where INES may or may not be suitable.

Methods INES is designed to be used by investigators or healthcare professionals who have a good grasp of the prin‑
ciples of economic evaluation and understand the strengths and weaknesses of partitioned survival models, but are 
not sufficiently familiar with a statistical package such as Excel or R to be able to construct and test a de‑novo PSM 
themselves.

INES is delivered to the user via a batch file. Once downloaded to the user’s hard drive, it interacts with the user 
via a portable version of R with web interactivity built in Shiny. INES requires absolutely no knowledge of R 
and the user does not need to have R or any of its dependences installed. Hence the user will deal with a standalone 
Shiny app. Inputs (digitalized survival curves, unit costs, posology, hazard ratios, discount rate) can be uploaded 
from a template spreadsheet.

Results The INES application provides a seamlessly integrated package for estimating a set of parametric hazard 
functions for progression free and overall survival, selecting an appropriate function from this menu, and applying 
this as an input to a PSM to calculate mean costs and quality‑adjusted life years. Examples are given that may serve 
as a tutorial.

Conclusion INES offers a rapid, flexible, robust and transparent tool for parametric survival analysis and calculating 
a PSM that can be used in many different contexts.
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Background
Models are decision tools commonly used for the eco-
nomic evaluation of health care technologies. In general 
terms, the model framework might be configured in sev-
eral ways including decision tree, partitioned survival 
model (PSM), state-transition (Markov cohort) model, or 
event -based simulation [1]. This article presents a new 
open-access modelling tool for PSM: INES (INteractive 
model for Extrapolation of Survival and cost).

The process of constructing a PSM usually requires 
three fundamental steps. First, the individual patient data 
(IPD) must be available from a clinical study containing 
duration of overall survival (OS) and progression-free 
survival (PFS) in the intervention and control group. 
However, IPD are often not available to the researcher. 
Hence the first step in these situations consists of recre-
ating the IPD from the coordinates of published OS and 
PFS Kaplan–Meier curves using a statistical algorithm, a 
process known as “digitalization” of the survival curves. 
The second step is to estimate a set of parametric func-
tions fitted to the IPD, and for the user to select the most 
appropriate function (we discuss possible criteria in the 
Methods). The third step is to estimate mean costs and 
mean (quality-adjusted) life years over a chosen time 
horizon. In a PSM this is achieved extrapolating the sur-
vival functions over the model time horizon, dividing 
the analysis time into short model cycles, applying cost 
weights, utility weights and a discount factor to the pro-
portion of the initial cohort in each state in each cycle, 
and numerically integrating over the model time horizon 
to obtain the areas under the curves.

There are several existing packages available to con-
duct the final step in a PSM analysis, such as TreeAge®, 
R packages [2], or the user could construct a de-novo 
model in Excel or R. These options vary in the degree 
of technical and programming expertise required of the 
user. However, all of these software options start from the 
premise that the user will provide the package with the 
parametric survival functions as inputs. In other words, 
existing PSM packages take for granted that the user has 
successfully accomplished the first two steps. This poses 
a steep learning curve and may be a barrier to many 
practitioners.

INES is designed to be used by investigators who have 
a good grasp of the principles of economic evaluation 
and understand the strengths and weaknesses of parti-
tioned survival models, but do not have the time, statis-
tical background or programming expertise to conduct 
all these steps for a PSM themselves. It offers a rapid, 
flexible, robust tool that brings together these modules 
in a single, seamless package. This article describes the 
properties of the tool, and discusses the situations where 
it may or may not be suitable. This article illustrates the 

tool using a particular case for demonstration purposes 
but we do not make any statement here about the appro-
priateness of these specific modelling choices or the cost-
effectiveness of particular therapies.

Methods
INES is delivered to the user via a batch file, available 
from https:// freei nesapp. github. io [3]. Once downloaded 
to the user’s hard drive, it interacts with the user via 
a portable version of R (v. 4.1.3), with web interactivity 
built in Shiny [4]. INES requires no knowledge of R and 
the user does not need to have R or any of its dependen-
cies installed (in practice, the user will deal with a stan-
dalone Shiny app). INES can be run on Windows (7, 8, 
10 and 11), Mac and Linux. The tool is available free of 
charge and under a creative commons attribution license 
(CC BY).

Once downloaded and extracted to a folder on the 
user’s hard drive, INES is initiated by selecting “run.bat” 
from the folder. Data are input via a spreadsheet template 
provided in the batch file. Once data are inputted, run 
time is a few seconds.

INES is designed to accomplish the tasks summarized 
in Table  1 and described in more detail in the follow-
ing sections. The PSM as enacted in INES estimates the 
proportion of the cohort in each of 3 states (labelled pro-
gression-free, progressed and dead) using two survival 
curves (PFS and OS), where the difference represents 
the time post-progression (PPS). The terms progression-
free and progressed are for convenience: fundamentally a 
PSM assumes that backward transitions are not allowed. 
Patients receive the intervention of interest at the start 
of the model or during the PFS state and may employ 
another treatment during the next state. Quality of life 
(utility) and cost weights are associated with the time 
in the progression-free and post-progression states [5]. 
INES compares two alternative therapies. In this article 
they will be termed “intervention” and “comparator” or 
“control”. Users are guided through the steps required by 
an interactive dashboard (Fig. 1). The model cycle length 
in INES is one month, and this cannot be altered. Data 
can be uploaded via a spreadsheet template, described in 
Table 2. Table 3 justifies the modelling choices built into 
INES.

Digitization of the Kaplan–Meier survival curves
INES requires as input the numerical coordinates of the 
Kaplan–Meier survival curves (the probability of OS 
and PFS state membership at each month). These can be 
digitized from publications using software such as Web-
PlotDigitizer (the website provides manuals and video 
tutorials [6]). These coordinates must be accompanied 
by the numbers at risk and, if available, the aggregate 

https://freeinesapp.github.io
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number of events. Behind the scenes, the INES tool uses 
a published R algorithm to map the digitized curves back 
to the original individual patient data (IPD), the time at 
which events occurred or censoring occurred [7, 8]. INES 
in its current configuration does not accept the original 
IPD as input.

Estimation of parametric survival functions in the control 
group
A PSM model requires as an input a parametric survival 
function for PFS and OS. Parametric functions are rec-
ommended because published PFS or OS survival curves 
in clinical studies are rarely complete. For example, many 

therapies gain marketing authorization before even half 
of the patients in the study have died. Notwithstanding, 
economic evaluation requires an estimation of mean sur-
vival time in each state. Even if available, median survival 
time will not be a suitable proxy for mean survival time 
if some individuals have long survival times after the 
median [9]. Hence it is necessary to model and extrapo-
late the PFS and OS survival curves.

Different parametric functions can make very different 
predictions about survival, especially in the time after the 
clinical trial. This is a crucial area of uncertainty in the 
construction of any PSM. There are several options for 
how survival might be modelled. Guidelines recommend 

Table 1 Functionality of the INES tool

IPD individual patient data. OS overall survival. PFS progression free survival. PPS Post progression survival. AIC Akaike Information Criterion. HR hazard ratio. PSM 
partitioned survival model

Function Description Reference to method or 
source of R code

Derive the IPD Derives from the published Kaplan Meier survival curves a close 
approximation to the original individual patient time‑to‑event 
data (IPD) for OS and PFS for 2 treatment groups

IPDfromKM

Estimate parametric survival curve in control group Allow the user to choose from a menu of parametric survival 
functions fitted to the IPD for PFS and OS in the control group

flexsurvreg

Model fit: AIC Calculate the AIC for the fit of the data to the parametric model 
in the control group (PFS and OS)

flexsurvreg

HR Calculate the hazard ratios between treatment groups, assuming 
proportional hazards (PFS and OS)

coxph

HR Perform a test of proportional hazards (PFS and OS) cox.zph

Parametric survival curve in intervention group Estimate the parametric survival curves in the intervention group 
by applying the hazard ratio to the respective control group sur‑
vival curve (PFS and OS). The user is given the option either to use 
published HR or the HR calculated by the package

Heemod:: apply_hr

Model fit: Visual Allow the user to visually inspect each parametric survival 
curve extrapolated over the chosen time horizon, and compare 
to the observed data (Kaplan Meier survival curve) (PFS and OS 
in each treatment group)

ggplot2

Costs Allow the user to specify the unit costs of medicines and other 
resources and the number of units employed per day, week 
or month, in each treatment group during the progression‑free 
and post‑progression states

heemod:: create_parameters_
from_tabular

Utility Allow the user to specify the utility weights in each treatment 
group during the progression‑free state, and a single utility 
weight during post‑progression. The model will calculate life 
years if the utility weights are set to 1

heemod:: create_parameters_
from_tabular

Discount rate Apply chosen discount rate to costs and effects (equally) Heemod:: discount

PSM Calculate the PSM in each treatment group over the specified 
time horizon

Heemod::run_model

Sensitivity analysis Allow user to specify the parameters for univariate sensitivity 
analysis within a range

Heemod::run_dsa

Results: graphical Allow user to visualise and download graphs of state member‑
ship (PFS, PPS, death) over time in each treatment group

plot, panels = by_state

Results: table Show undiscounted and discounted mean costs and effects 
in each treatment group and the incremental cost‑effectiveness 
ratio

Sensitivity analysis results: graphical Allow user to visualise and download a tornado chart of the sen‑
sitivity analysis

ggplot2
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that the chosen function should approximate both to 
the observed clinical study data (internal validity), and 
the investigators’ understanding of the long-term pro-
gression or survival of the target population of patients 
(external validity) [10].

INES is unique among economic evaluation tools as 
it provides an integrated package that enables the user 
to estimate a set of parametric hazard functions from 
observed PFS and OS Kaplan–Meier coordinates, select 
an appropriate function from this set, and apply this 
function as an input to a PSM to calculate mean costs 
and quality-adjusted life years. All the algorithms are 
handled behind the scenes and the user is not required to 
manipulate any R commands.

There are 4 survival functions to consider: OS and PFS 
in each treatment group. In general terms, one could fit 
independent functional forms to each of the 4 curves, or 
the same functional form, or permutations thereof [11]. 
The particular approach taken in INES is to fit paramet-
ric survival functions to model survival in the control 
group, and apply a hazard ratio (HR) to represent the 
respective survival in the intervention group (Table  3). 
The INES tool allows the user to choose from one of eight 

functions: exponential, gamma, log-logistic, Weibull, log-
normal, Gompertz, generalized gamma, and generalized-
F. Different parametric functions can be chosen for PFS 
and OS.

The INES tool offers two useful features to help the 
user choose an appropriate parametric function. First, 
INES calculates the Akaike Information Criteria (AIC) 
(Fig. 2). This compares the fit of the observed compara-
tor group data with the predictions of the parametric 
model. The AIC rewards goodness of fit of the paramet-
ric function to the observed data, while penalizing the 
number of parameters. However, AIC (and similar tests) 
only measure internal validity, and should be used cau-
tiously. Such tests tell us nothing about the absolute qual-
ity of a model, only the relative quality of the candidate 
parametric functions. The AIC does not provide any 
warning that all models might fit the data poorly. The 
AIC also tells us nothing about the ability of the model 
to predict events that occur after the source data fol-
low-up. The second useful feature provided by INES is a 
graph of the observed data and the predicted model. This 
allows the user to visualize the fit of the parametric func-
tion with the observed data, and to examine the effect of 

Fig. 1 Dashboard
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extrapolating this function over the model time horizon 
(Fig. 2). The user should seek expert judgement about the 
plausibility of the chosen model.

Hazard ratio for PFS and OS
The INES tool assumes the hazard ratios for OS and PFS 
are unchanged over time (proportional hazards, PH). The 
user can use the spreadsheet template to input hazard 
ratios for PFS and OS into INES based on published evi-
dence from a clinical study or the literature. Alternatively, 
the user can request that INES calculates the hazard 
ratios from the IPD (Cox PH model).

The INES tool uses the apply_hr function from the 
package HEEMOD to calculate the survival function in 
the intervention group, given the survival function in the 
control group and the HR. The apply_hr function multi-
plies the hazards in the control group by the (constant) 
HR. This works whether the control group model was 
estimated by flexsurv using the PH metric (that is, expo-
nential or Gompertz) or the accelerated failure time met-
ric (other models).

Proportional hazards mean that the rate of events 
(the hazards) in individuals in the intervention arm are 
a constant multiple of the rate in the control arm. As 
noted above, the PH assumption is only one of the pos-
sible options for modelling survival curves in a PSM and 
extrapolating beyond the clinical study [10–12]. The user 
must consider whether the PH assumption is appropriate. 
A visual inspection of the Kaplan–Meier survival curves 
in each group can be informative. If the survival curves 
cross, or if the survival curves radically diverge, then this 

may indicate that hazards may not be proportional. The 
INES tool also provides a statistical test based on the dig-
itized survival curves [13] (Fig.  2). If the p-value is low 
(e.g. less than 0.05) then the sample data are not con-
sistent with the null hypothesis of proportional hazards. 
However, statistical tests are not the only criteria and 
users must seek expert judgement to assess whether the 
proportional hazards model is appropriate for modelling 
and extrapolation in their evaluation. If hazard ratios are 
not thought to be constant over the model time horizon, 
then the user should consider using a different tool.

Discount rate
The discount rate ensures that the model takes account 
of social time preference [14]. The tool uses the same dis-
count rate for costs and benefits, and the value should be 
input as an annual rate (guidelines usually recommend 
values between 0 and 0.05 [15]). A range can be employed 
for univariate sensitivity analysis.

Unit costs
The tool requires users to introduce prices or unit costs 
of each of the resources employed (see "Resource use" 
section). A range of values can be employed for univari-
ate sensitivity analysis.

Resource use
The tool allows users to introduce the number of units 
of resources employed in each treatment group in each 
health state. These can be doses of medicines, adverse 
events, diagnostic tests, other healthcare or any other 

Table 3 Model choices in INES and possible alternative configurations of a PSM

Configuration in INES Possible alternative modelling choices Reason for not employing the alternative 
configuration in INES

The hazard function in the intervention 
is the same as the control

Allow independent hazard functions in each 
treatment group

Complexity: Would require the user to choose 4 
parametric functions rather than 2
Validation: Predictions made by the model cannot 
be explained with reference to published HR

Proportional hazards are assumed Allow the HR to change over time Complexity: Would require the user to specify 
a function for how the HR changes over time 
(continuously or piecewise) during and after 
the clinical study. These parameters are rarely 
estimated in clinical studies

INES provides the option of estimating the haz‑
ard ratios from the observed data. These HR are 
estimated using the Cox model

Estimate the hazard ratios using the corre‑
sponding parametric model (flexsurvreg) rather 
than the Cox model

Validation: The HR would be different for each 
parametric model, and might be substantially 
different to the value published in a clinical study, 
which is usually also estimated by a Cox model

The utility weights are constant over time 
within treatment groups

Allow utility weights to vary over time, for exam‑
ple, to take account of adverse treatment‑
related events during chemotherapy

Work in progress: This may be considered 
for a future release of the model

No probabilistic sensitivity analysis Allow probabilistic sensitivity analysis, includ‑
ing model averaging of different options 
for the survival function

Work in progress: This may be considered 
for a future release of the model
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type of resource. The user can express the consump-
tion in any period either at a general level (e.g. 1 unit per 
month) or at a very granular level (e.g. on specific days). 
The INES tool will automatically and precisely translate 
this information into the equivalent consumption during 
each model cycle.

During the PFS state, INES allows consumption of 
each resource to vary over time. For example, in the 
ANDROMEDA trial [16], patients received daratu-
mumab in “treatment cycles” (not to be confused with 
the “model cycle” which is an entirely different concept). 
Each treatment cycle in ANDROMEDA lasted 4  weeks. 

Fig. 2 a Overall survival and b Progression‑Free Survival predicted by the INES tool. Red curve: intervention group. Blue curve: control group. 
Continuous curve: predicted survival. Intermittent curve: observed survival (Kaplan Meier). AIC Akaike Information Criteria. OS overall survival. PFS 
Progression Free Survival
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Patients received daratumumab once a week in treat-
ment cycles 1 and 2, every 2 weeks in treatment cycles 3 
through 6, and every 4 weeks thereafter until disease pro-
gression, the start of subsequent therapy, or for a maxi-
mum of 24 treatment cycles from the start of the trial, 
whichever occurred first. In the clinical study, other ther-
apies were also given in both treatment groups, but are 
not discussed here for brevity. INES has been designed to 
be flexible enough to calculate consumption under com-
plex administration regimens such as these. Additional 
file 1 shows the data input template for this example and 
gives further explanation of the variables.

Utility weights
The model requires the user to enter three utility param-
eters: the utility weights in each treatment group during 
the progression-free state, and a single utility weight dur-
ing post-progression. The model will calculate life years 
if the utility weights are 1. A range can be employed for 
univariate sensitivity analysis. The current version of the 
tool does not allow utility weights to vary over time, but 
this might be modified in future versions.

PSM model engine
The model engine for the PSM is implemented by the 
HEEMOD package in R (Table 1) [17]. The user provides 
the chosen parametric survival functions for PFS and 
OS ("Estimation of parametric survival functions in the 
control group" section), the hazard ratios ("Hazard ratio 
for PFS and OS" section), the discount rate ("Discount 
rate" section), resource use quantities and prices of those 
quantities ("Unit costs" and "Resource use" section) and 
the utilities ("Utility weights" section). Behind the scenes, 
HEEMOD then defines the cost and utility weights for 
the three states (PFS, PPS and dead) (define_state), the 
strategies (define_strategy) and runs the model (run_
model). The probability of membership of the PPS state 
as the difference between OS and PFS is set up using 
the define_part_surv function. A half-cycle correction 
is applied, meaning that events are calculated as if they 
occur half-way through each month. Univariate sensitiv-
ity analyses are conducted using the run_dsa function.

Probabilistic sensitivity analysis (PSA)
The current version of the tool does not implement PSA. 
While HEEMOD provides a function to implement PSA 
based on the same variables used in the univariate sen-
sitivity analysis (Table  2: unit costs, hazard ratios, and 
the discount rate), it does not account in PSA for what 
is often the principal source of uncertainty, namely the 
choice of parametric survival function ("Estimation of 
parametric survival functions in the control group" sec-
tion). Properly taking account of structural uncertainty 

is a challenge for any PSM [18]. It is hoped that a future 
version can provide a means of conducting PSA that 
takes these factors into account, for example, by model 
averaging [19]. We suggest in the meantime that the ana-
lyst reports deterministic results using different paramet-
ric functions.

Results
An example using INES is given based on the Des-
tiny-Breast03 study [20]. This clinical study compared 
Trastruzumab Deruxtecan (intervention) versus Tras-
truzumab Emtansine (control) for second-line treat-
ment of advanced HER2 + breast cancer [20]. The clinical 
study reported Kaplan–Meier curves for PFS and OS 
up to 34  months, though less than 10% of patients had 
follow-up beyond 2  years. The reported HR were 0.55 
(0.36–0.86) for OS and 0.28 (0.22–0.37) for PFS. A tem-
plate pre-loaded with the data used in this example can 
be downloaded from https:// data. mende ley. com/ datas 
ets/ tn84r ck94z/1 [21].

The INES tool produces interactive graphs compar-
ing the Kaplan–Meier with the user’s parametric choices 
(Fig.  2). For illustrative purposes, the Weibull was cho-
sen for PFS and OS, and a 100 month time horizon (This 
article does not comment on the appropriateness of these 
parameters in this particular case. The reader should 
consult methodological guidelines [12]). The graph also 
shows the AIC and the p-value of the test for propor-
tional hazards.

Unit costs and resource use
Trastruzumab Emtansine is administered 3.6 mg/kg once 
every 3 weeks and Trastruzumab Deruxtecan is adminis-
tered 5.4 mg/kg, until progression. For a 100 mg unit with 
no wastage, for a representative 70 kg individual this rep-
resents 2.52 units per treatment cycle of Trastruzumab 
Emtansine (control: treatment = 2) versus 3.78 units per 
cycle of Trastruzumab Deruxtecan (intervention: treat-
ment = 1). The list price of a 100  mg unit is (approxi-
mately) 2720€ for Trastruzumab Emtansine and 2194€ 
for Trastruzumab Deruxtecan. The costs per month were 
coded in the format shown in Additional file 2 assuming 
a lower bound for prices of 50% of list price. Values are 
shown here for illustration only and have no bearing with 
real prices that might be paid.

The costs of a hypothetical subsequent therapy after 
progression are captured in the parameter “next_line”. 
This is valued as zero in the base case, and 3000€ per 
month as a sensitivity analysis.

Estimate of mean costs and effects
INES reports predictions of survival (Additional file  3), 
undiscounted and discounted means of life years, costs 

https://data.mendeley.com/datasets/tn84rck94z/1
https://data.mendeley.com/datasets/tn84rck94z/1
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and QALY (or LY if utilities are 1) (Additional file 4). In 
this case, the ICER is 248,409€ per incremental life year.

Univariate sensitivity analyses
INES produces a tornado chart (Additional file 5). Users 
can select which variables to include or exclude from 
the display. All charts and graphs can be downloaded as 
images from the application to the user’s hard drive.

Discussion
INES provides a tool for users who are knowledgeable 
about the disease area, the evidence base and the prin-
ciples of economic evaluation but do not have the time 
or programming expertise to construct and validate a 
de novo model. Existing R commands and packages are 
available to recreate IPD from the Kaplan–Meier coordi-
nates, fit parametric survival functions to these IPD, and 
construct a PSM with these survival functions. However, 
taken together, they demand a high level of technical skill 
and time. INES integrates all these features in a single 
application that interacts with the user via their browser, 
without requiring any knowledge by the user of the 
underlying R commands. INES is unique in this impor-
tant regard.

INES was designed to offer powerful functionality, pre-
viously accessible only to  computer  programming  spe-
cialists, and at the same time to be simple to use. The 
need to integrate the various modules in a single appli-
cation meant that certain parameters were fixed deliber-
ately in the construction of INES and so cannot be altered 
by the user. The following paragraphs discuss these and 
other limitations.

INES implements a PSM with three states. There are 
a few examples of PSM with four states [22], but three 
states is the most common configuration for practical 
purposes [5]. The cycle length is fixed at one month. This 
need not be a severe limitation for most applications, as 
the resource use can be defined at very granular intervals.

PSM have been widely used in health technology 
assessment, particularly in late stage and metastatic can-
cer. Their popularity has been attributed their simplicity 
of structure, their frugal demand for input data, and the 
ability to directly compare results to the source clinical 
study [5]. Their weaknesses are also well documented. A 
PSM is mainly descriptive, that is, it does not incorporate 
an explanation of how a treatment achieves its results. 
In principle, a treatment that delays disease progression 
might be expected to delay death, but (unlike a Markov 
model) a PSM does not parameterize this conditional 
probability. Survival and PFS in a PSM are modelled  as if 
they were independent variables.

Models such as PSM are often desirable to extrapo-
late survival and estimate costs when clinical trial data 

do not follow up all participants until death [23]. A PSM 
is usually appropriate when the extrapolation is over a 
moderate time horizon beyond that of the source clini-
cal study. Over a much longer time horizon, other varia-
bles not captured by the clinical study data will influence 
outcomes (such as mortality related to old age) [24]. In 
such situations, a Markov model or discrete event simu-
lation may be needed to model these kinds of events. The 
AIC is only one possible indicator of the appropriateness 
of the model, and other criteria should also be taken into 
account.

INES is only appropriate where hazards are pro-
portional. There will be examples where proportional 
hazards cannot be assumed e.g. if the survival curves rad-
ically diverge or converge [5, 25]. In these circumstances 
an alternative modelling package should be considered. 
Guidelines are available elsewhere [10, 12].

In Fig.  2, at 100  months, about 15% of the interven-
tion cohort was predicted to still be alive. Truncated 
mean survival may underestimate the benefit of treat-
ment. However, in the example shown, the model fails if a 
longer time horizon is chosen, because the OS probabil-
ity becomes less than PFS, producing a logical inconsist-
ency which halts the model engine (the screen turns grey 
when the model engine fails, and INES must be restarted 
from the run.bat file). This is not a failure of INES as 
such but an inherent limitation of the PSM framework, 
by modelling OS and PFS as if they were independent. 
The literature contains ad-hoc attempts to “correct” the 
problem, for example, by constraining PFS to be less 
than OS, or specifying that gains in PFS are automati-
cally translated into equal gains for OS [5, 25]. However, 
these corrections are not based on principle [25] and we 
decided that it is more transparent if the model generates 
an error, rather than give an artificially adjusted result. 
There may be cases where the model successfully runs for 
the base case but fails for the univariate sensitivity anal-
yses. If the model fails, the user might choose a shorter 
time horizon, different parametric survival functions, or 
a different hazard ratio.

If it is important that the model captures explicitly the 
relation between PFS and OS, then a different framework 
would be required, such as a Markov model. Likewise, a 
PSM supposes that the outcomes (progression and mor-
tality) observed in the source clinical study would be rep-
licated in real-world clinical practice. A PSM is not easily 
adapted to take account of potential biases in the clini-
cal study, such as unrepresentative selection of patients, 
inappropriate treatment switching, off-label downstream 
treatments post-progression, drug wastage, or inappro-
priate comparator treatments [5].

Because a PSM models PFS and OS independently, an 
increase in PFS can increase costs (where therapies are 
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given until progression) but does not increase OS in the 
model (e.g. see the tornado chart, Additional file 5). This 
is another limitation of the PSM framework, rather than 
INES per se. The tornado shows that a variation in the 
HR for OS appears “unbalanced”, in the sense that a given 
increase in the HR increases the ICER much more than 
the same unit reduction in the HR reduces the ICER. This 
occurs because as the HR approaches 1, the absolute dif-
ference in life years approaches zero, and hence the ICER 
approaches infinity. This illustrates a limitation of using 
the ICER (a ratio) as an outcome variable. Furthermore, if 
the HR becomes greater than 1, the ICER would become 
negative, which has no interpretation for decision mak-
ing. Hence users need to take account of the absolute 
incremental cost and incremental QALY as well as the 
ICER when interpreting the results of univariate sensitiv-
ity analyses.

There are many ways that a PSM could be configured 
[5, 12, 18, 19, 25]. We aimed to create a tool for survival 
analysis and PSM that was easy to use and robust. INES 
can provide a rapid and transparent analysis that can be 
shared by all parties, for example facilitating the nego-
tiation of price and reimbursement contracts [26]. It is 
hoped that the tool will be acceptable in many evalua-
tions, but it will not be suitable for all, and potential users 
should be aware of its limitations (see Table 3). Further 
work might include time-varying utilities, budget impact 
assessment, PSA, and model averaging. As the tool is 
open-source, it is hoped that a community of users will 
emerge to comment and modify.
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