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Abstract
Background: Measurement of individuals' costs and outcomes in randomized trials allows
uncertainty about cost effectiveness to be quantified. Uncertainty is expressed as probabilities that
an intervention is cost effective, and confidence intervals of incremental cost effectiveness ratios.
Randomizing clusters instead of individuals tends to increase uncertainty but such data are often
analysed incorrectly in published studies.

Methods: We used data from a cluster randomized trial to demonstrate five appropriate analytic
methods: 1) joint modeling of costs and effects with two-stage non-parametric bootstrap sampling
of clusters then individuals, 2) joint modeling of costs and effects with Bayesian hierarchical models
and 3) linear regression of net benefits at different willingness to pay levels using a) least squares
regression with Huber-White robust adjustment of errors, b) a least squares hierarchical model
and c) a Bayesian hierarchical model.

Results: All five methods produced similar results, with greater uncertainty than if cluster
randomization was not accounted for.

Conclusion: Cost effectiveness analyses alongside cluster randomized trials need to account for
study design. Several theoretically coherent methods can be implemented with common statistical
software.

Background
Cluster randomized trials are commonly used to evaluate
the effectiveness and cost effectiveness of interventions in
health care, health promotion and health professional
education. Groups of individuals, such as doctors'
patients or schools' pupils, are allocated together to
receive different interventions or to follow usual practice.
One key advantage of randomly allocating groups rather
than individuals is that it permits inferences about the
intervention's effects on service providers as well as on

users. For example, in a trial of an educational interven-
tion aimed at doctors, allocating doctors together with
their patients permits inferences about the intervention's
effects on doctors as well as on their patients. But cluster
randomization tends to reduce the statistical power and
precision of trials because of similarities between individ-
uals within each cluster, compared to individuals in other
clusters. This similarity, or non-independence, is
expressed as an intra-cluster, or intra-class, correlation
coefficient (ICC) [1]. The ICC is the proportion of
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response variance that occurs between clusters, as a pro-
portion of the total variance (within and between clus-
ters) [1]. Statistical methods for comparing outcomes in
cluster randomized trials are now well developed [1,2].
But there has been little methodological research on
appropriate methods for jointly analyzing cost and effec-
tiveness data from cluster randomized trials [3,4].

Cost effectiveness analysis with individual level costs and
outcomes is more complex than analysis of effects or costs
alone, because differences in costs and differences in out-
comes need to be analysed together. Uncertainty about
cost effectiveness estimates can be quantified as confi-
dence intervals for incremental cost effectiveness ratios
(ICERs), or probabilities that interventions are cost effec-
tive, using two general approaches [5]. One approach
combines cost and effect data on a two dimensional cost
effectiveness plane (for example, Figure 1) [5-7]. It models
the cost difference in one dimension and the outcome dif-
ference in the other, taking into account their variances
and covariance and producing a cost effectiveness ellipse.
The other approach combines cost and outcome measures
for each individual by calculating net benefits, which are
then compared between trial arms [4,8,9]. Both general
approaches can be used for cluster randomized trials
[3,4].

Clustering of costs and of outcomes is often neglected in
economic evaluations alongside cluster randomized trials
that have individual cost data. Several economic evalua-
tions alongside cluster randomized trials have used boot-
strapping to deal with asymmetrically distributed costs
[10-12], but without specifying whether they sampled
individuals or clusters. If they simply sampled individuals
then cluster randomization design effects would not have
been accounted for. Other studies adjusted for clustering
using hierarchical regression models to estimate cost dif-
ferences and outcome differences and their variances
[13,14]. They then used these values to plot confidence
ellipses. But neither of these two studies estimated ICER
confidence intervals or considered correlations between
costs and effects. Others have adjusted for clustering when
comparing costs and comparing outcomes, but without
estimating ICERs or probabilities that the intervention
was cost effective [15].

In this paper we describe several appropriate methods for
analyzing cost effectiveness data from cluster randomized
trials. We show how to apply these methods using data
from one such trial [16].

Example
This cluster randomized trial evaluated an educational
intervention aimed at improving the management of lung
disease in adults attending South African primary care

clinics [16]. Forty clinics were randomized to intervention
or control arms. In each clinic 50 patients were inter-
viewed at baseline and 3 months later. The trial outcome,
indicating appropriate care, was defined as present if a
patient was 1) newly diagnosed as having tuberculosis or
2) treated with inhaled corticosteroids for asthma or 3)
referred for higher level care in the presence of defined
indicators of severe illness. Health service costs were
measured for each subject and included costs of clinic and
hospital attendance, investigations, drugs, ambulance
transport and the educational intervention. Complete
data were available on 1856 patients. The prevalence of
desirable outcome was 21% in the intervention arm and
11% in the control arm (odds ratio 2.2, 95% CI adjusted
for clustering 1.5–3.2, ICC = 0.061). Costs were positively
skewed, with mean costs of 220 South African Rand (ZAR)
(median 159, interquartile range 77–266) in the interven-
tion arm and ZAR 205 (median 140, interquartile range
70–218) in the control arm, and ICCs of 0.01 in each arm.
The point estimate for the incremental cost effectiveness
ratio was thus ZAR150 per unit or effect ((ZAR 220–205)/

Cost effectiveness plane from bootstrap sampling of individu-als, or clusters then individualsFigure 1
Cost effectiveness plane from bootstrap sampling of individu-
als, or clusters then individuals.

Individuals sampled

-60

-40

-20

0

20

40

60

80

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Outcome difference

C
o

s
t 

d
if

fe
re

n
c

e

Clusters then individuals sampled

-80

-60

-40

-20

0

20

40

60

80

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Outcome difference

C
o

s
t 

d
if

fe
re

n
c

e

Page 2 of 7
(page number not for citation purposes)



Cost Effectiveness and Resource Allocation 2007, 5:12 http://www.resource-allocation.com/content/5/1/12
(21%–11%)). Net benefits were not normally distributed.
At willingness to pay of zero they were, by definition, the
negative of costs, that is, with negative values and nega-
tively skewed. At higher willingness to pay levels, net ben-
efits were bimodal, depending on whether subjects had
experienced the outcome or not. The ICC for net benefits
ranged from 0.01 (at willingness to pay of zero) to 0.036
(at willingness to pay of ZAR2000). These ICCs indicated
that clustering of costs and outcomes needed to be
accounted for. The remainder of this paper shows how
this can be done. For each method we outline the analytic
principles, describe how they were implemented with
Stata [17] or WinBUGS [18] software, and show the
results.

Methods
1. Joint modelling of costs and effects
1.1 Bayesian parametric model
Nixon and Thompson have shown how to model costs
and effects jointly for individually randomized trial data
[7]. We have adapted the model to cluster randomized tri-
als. We assume that we have two treatments which we
wish to compare. In general, we assume that cost (C) and
effectiveness (E) have distributions which can be charac-
terised by their means and variances:

where  is the mean cost for the ith the individual in the

jth cluster in arm k of the trial and  is the standard devi-

ation of the cost. Similarly  is the mean effectiveness

for the ith the individual in the jth cluster in arm k of the

trial and  is the standard deviation of the effective-

ness. We assume that we can model the mean cost and
effectiveness as a linear combination:

In equation (2), αC is the average cost for the control treat-

ment and  is the additional cost for treatment k (by

default  = 0);  is the deviation from the average cost

of centre j. It is possible to extend this model to allow for

covariates [7]. Similarly, in equation (3) αE is the average

effect, or outcome, for the control treatment and  is the

additional effect of treatment k (by default  = 0);  is

the deviation from the average effectiveness of centre j. βk

is a parameter which allows for the relationship between

costs and effects, φj and allows this to vary between clus-

ters. From this model we can define the ICER as:

We also define the probability that the intervention is cost
effective (for a given willingness to pay, say λ) as Pr(eλ – c
> 0), where e is the effect and c is the difference in cost.

In our example we shall compare two models, one assum-
ing a normal distribution for the costs and another assum-
ing a gamma distributions for the costs. Both models will
assume a Bernoulli distribution for the effectiveness since
this was a binary outcome measure. In both the normal
and gamma distribution models we shall assume a linear
link function (although traditionally a log link function
would be used for the gamma distribution in order to
ensure that the mean was estimated to be above zero). For
the Bernoulli model we shall assume a logit link function
since this is the standard model for effectiveness in clinical
trials with binary outcome data. None of these models
allow for individual (or cluster) level covariates.

In order to complete the Bayesian specification of the
model we must assign prior distributions to all the
unknown parameters. The particular priors that we shall
use are:

All other parameters are assumed to follow a normal dis-
tribution with large variance.

1.2 Non-parametric bootstrapping
We can apply the bootstrap to the model defined by equa-
tion (1) whilst allowing both for the relationship between
the cost and the effectiveness and for the non-independ-
ence of the cost and the effectiveness due to clustering of
the data. This method has the advantage of not assuming
a specific distribution for either the cost or the effective-
ness [19].

The following algorithm will construct a bootstrap sample
of K replications with m clusters each of size w. However
this particular algorithm is only applicable in the situa-
tion where each cluster is of the same size; alternative
algorithms are appropriate when this assumption is not
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true [19,24]. The relationship between costs and effective-
ness is retained due to their joint sampling.

Bootstrap algorithm
1. For the observed data set estimate the ICER, say ICER0;

2. For i in 1 to K

a. For j in 1 to m

i. Randomly select (with replacement) a cluster centre, say
kj

ii. Within that cluster randomly select (with replacement)
w sets of costs and effectiveness, these must be selected
together in order to preserve the relationship between
costs and effectivess.

b. Estimate the ICER on the basis of the bootstrap sample
constructed in part a (say ICERi), as the difference
between treatment and control groups in mean costs,
divided by the difference in mean outcomes.

Confidence intervals can then be constructed for the ICER
in various ways [22]. We shall use the bias corrected accel-
erated percentile method [17]. We also estimated the
probability that the intervention was cost effective. This
was the proportion of iterations in which the effect, mul-
tiplied by the corresponding willingness to pay per effect,
was greater than the cost difference.

2. Regression-based models of net benefits
The calculation of net benefits reduces costs and effective-
ness to a single variable which can be used in standard
regression analyses [5]. We define the net benefit (nb) as,

nbijk = eijkλ – cijk,

Where, as before, eijk is the effectiveness on the ith person
in the jth cluster in arm k, λ is the money society would be
willing to pay for a unit of effectiveness, and cijk is the cost.
Net benefit is expressed in monetary terms and so is also
called net monetary benefit.

In a standard simple linear regression model with net ben-
efit as the outcome variable and trial arm as the explana-
tory variable, the regression coefficient for the treatment
term represents the incremental net benefit attributable to
the intervention, for that level of willingness to pay. Will-
ingness to pay is explored for a range of levels because it is
usually not known. To estimate the corresponding incre-
mental net benefit, 95% confidence limits and P values, a
separate regression analysis is done at each willingness to
pay level.

The intervention is defined to be cost effective, at a given
willingness to pay level, if the corresponding incremental
net benefit is greater than zero. Therefore the probability
that the intervention is cost effective at a given willingness
to pay level is the probability that the incremental net
benefit is greater than zero. If the coefficient is greater than
zero, then the probability that the intervention is cost
effective is one minus half the one sided P value for the
treatment term. If the coefficient is less than zero, then the
probability that the intervention is cost effective is half the
one sided P value. In Bayesian models the probability that
the intervention is cost effective is the predictive probabil-
ity that the net benefit is greater than zero. If the model is
estimated using the Markov chain Monte Carlo method
this is simply estimated as the proportion of iterations for
which the incremental net benefit is greater than zero.

The ICER and its confidence limits can also be estimated
from these regression results because the values of λ at
which the 95% confidence intervals of the incremental
net benefit estimate are equal to zero are thus the 95%
confidence intervals of the ICER [5]. These can be esti-
mated from the estimated incremental net benefits, and
their confidence limits.

Net benefit regression has previously been used to analyse
cost effectiveness data from multi-centred trials [4,9], and
can be adapted to account for cluster randomization in
various ways. We detail three possible methods.

2.1 Least squares regression of net benefits with robust estimates of 
standard errors
The standard error from the traditional regression model
will be inaccurate and lead to an underestimation of the
standard errors of the parameter estimates, but it is possi-
ble to compensate for this by using the Huber-White sand-
wich estimator [17]. The Huber-White sandwich
estimator accounts for the non-independence of observa-
tions within each cluster. However, because it adjusts the
standard errors post estimation the likelihood-ratio test
statistics are not applicable.

2.2 Least squares regression of net benefits with a hierarchical model
Hierarchical (multi-level) linear regression models
account for clustering of net benefits by modelling indi-
viduals at the first level and clusters at the second. We used
Stata's xtmixed procedure [17] to specify a hierarchical
model with net benefit as outcome, with trial arm as
explanatory variable and with coefficients and intercepts
varying randomly between clusters. In particular, we con-
sider a model of the form:

nbijk = µijk + εijk

µijk = µ + τk + θj + υjk
Page 4 of 7
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Where µ is the overall mean net benefit, τ2 is the addi-
tional net benefit associated with the treatment arm (by
default τ2 = 0), θj is the deviation in net benefit due to the
jth clusters centre and vj,k is the deviation in net benefit in
centre j (by default all v1,k are zero).

2.3 Net benefit regression with a Bayesian hierarchical model
Spiegelhalter [24] described a Bayesian two level linear
regression model for comparing continuous outcomes in
cluster randomized trials, defined as follows:

nbijk~ N (µ ijk, σ2),

µ ijk = µ + τ k + θj,

Where, µ is the mean net benefit for the control arm; τ2 is
the additional net benefit associated with the treatment
arm (by default τ1 = 0); and θj is the deviation in net ben-
efit due to the jth clusters centre. In order to complete the
model description we shall use the following prior distri-
butions:

τ2 ~ N(0,100000)

µ ~ N(0,100000)

This model must be estimated separately for each level of
willingness to pay. It could be extended by including an
additional random effect of incremental net benefit by
centre.

Results
Joint models of cost and effect
The joint models were fitted using WinBUGS. In particu-
lar we ran the Bernoulli-Normal and Bernoulli-Gamma
models with random intercept defined by equations 2 and
3. We ran the models for 10,000 iterations, using the first
5,000 as burn-in and the remaining 5,000 were thinned at
an interval of 5 in order to give an approximately inde-
pendent sample. We found that the best fitting model, as
indicated by the smallest deviance information criterion,
was the Bernoulli-Gamma model including φj. This model
gave an ICER of 189 (95% CI -194 to 647) (Table 1) with
probabilities of being cost effective as shown in Figure 2.

All of these models gave similar probabilities of being cost
effective.

The non-parametric bootstrap was carried out with 1,000
bootstrap replications and gave an ICER of 150 (95% CI -
918 to 217), the results are shown in Table 1 and in Figure
2. Applying the bootstrap while ignoring the clusters and
simply randomly selecting individuals and costs resulted
in the same estimated ICER but with much narrower con-
fidence intervals. These results are summarised in Table 1
and Figure 2. The long left tail of the ICER distribution
was due to bootstrap samples that produced moderate
(negative) differences in costs accompanying small
effects, resulting in large negative ICERs.
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Cost effectiveness acceptability curve: probability that the intervention was cost effective for different levels of willing-ness to pay and with different analytic methodsFigure 2
Cost effectiveness acceptability curve: probability that the 
intervention was cost effective for different levels of willing-
ness to pay and with different analytic methods.
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Table 1: Incremental cost effectiveness ratios (ZAR). 
Incremental cost effectiveness ratios (in South African Rand)

Analytic method ICER 95% 
confidence 

limits

Cost effectiveness plane
Bootstrapping individuals 150 -143, 489
Bootstrapping clusters then individuals 150 -918, 217
Bayesian hierarchical model 189 -194, 647

Linear regression of net benefits
Least squares model without adjustment 154 -162, 481
Least squares model with robust 
adjustment

154 -257, 575

Least squares hierarchical model 155 -244, 568
Bayesian hierarchical model 157 -282, 600

ICER incremental cost effectiveness ratio.
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Net benefit models
The standard linear regression model gave an estimated
ICER of 154 (95% CI -162 to 481); once the robust stand-
ard errors were taken into account the confidence interval
for the ICER increased to (-257 to 575). The least squares
hierarchical model resulted in an estimated ICER of 155
(95% CI -244 to 568) and the Bayesian hierarchical
model had an estimated ICER of 157 (95% CI -282,600).
These results are contained in Table 1 and Figures 2 and 3.

Discussion
We have demonstrated how individual cost and outcome
data from cluster randomized trials can be analysed in var-
ious ways with widely available software. In our example
different appropriate methods produced similar results.
Predictably, adjusting for clustering resulted in greater
uncertainty about ICERs, and lower probabilities that the
intervention was cost effective, compared to methods that
ignored clustering. Of all our results, the ICER confidence
intervals from 2 stage bootstrapping differed most from
confidence intervals from other methods. ICER point esti-
mates were similar (150–157) except for the Bayesian
hierarchical joint model of costs and effects (189) because
the latter assumed a gamma distribution of costs.

To be able to interpret ICER confidence intervals that
include zero, one needs to plot uncertainties about differ-
ences in costs and effects on a cost effectiveness plane (Fig-
ure 1). This is because, if the cost effectiveness ellipse
extends to non-adjacent quadrants, a negative ICER confi-
dence interval is uninterpretable. This is because it com-
bines information about dominant situations with greater

costs and worse outcomes, and situations with lower costs
and better outcomes [5]. But in this example the negative
ICER represented the latter situation only (Figure 1). That
is, even if society was willing to pay up to these amounts
(the lower confidence limits in Table 1) to avoid one unit
of effect, the intervention would still be cost effective
because of cost saving. So the lower confidence limit,
which is reassuring, is here of less interest than the upper
confidence limit, which shows how much might have to
be paid for an effect.

Our example of one trial has limited generalizability,
which would be enhanced by comparing these methods
using different data from other trials and from simula-
tions. Problems could potentially occur with fewer clus-
ters or with varying numbers of individuals per cluster.
For example, Flynn and Peters used simulated data to
show that, with 24 or fewer clusters per arm, Stata's boot-
strap ICER estimates may be spuriously precise [3]. They
also found that Stata's robust adjustment performed bet-
ter than its bootstrap procedures in estimating cost differ-
ences [23]. Net benefit regression may be invalid with
small samples if net benefits are not normally distributed.
In this example, however, estimates from net benefit
regression were similar to nonparametric bootstrap esti-
mates, as predicted by the central limit theorem. The boot-
strap methods we describe may be inappropriate if cluster
sizes vary [3,20], in which case more sophisticated meth-
ods might be needed [24]. Net benefit regression models
and Nixon's and Thompson's two dimensional model [7]
need not assume equal cluster size. Nixon's and Thomp-
son's model has several other advantages. It can accom-
modate various cost distributions, does not need to be
repeated at different willingness to pay levels, does not
need separate regression analyses to estimate ICER confi-
dence intervals, and can produce the cost effectiveness
ellipse needed to interpret a negative ICER. Two stage
bootstrapping has similar advantages, but we found its
results to be unreliable over repeated analyses, even with
10000 iterations. A pragmatic approach is to check the
robustness of the primary analysis by also using another
method, especially if there are few clusters or if their sizes
vary.
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